原位聚合水性聚氨酯/聚多巴胺粒子复合材料的制备及性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Properties of Waterborne Polyurethane/Polydopamine Nanoparticles Prepared by in situ Polymerization
  • 作者:徐文卿 ; 吕亚栋 ; 孔米秋 ; 黄亚江 ; 李光宪
  • 英文作者:Wen-qing Xu;Ya-dong Lv;Mi-qiu Kong;Ya-jiang Huang;Guang-xian Li;School of Aeronautics and Astronautics, Sichuan University;College of Polymer Science and Engineering, Sichuan University;State Key Laboratory of Polymer Materials Engineering, Sichuan University;
  • 关键词:聚多巴胺 ; 水性聚氨酯 ; 力学性能 ; 热稳定性 ; 抗紫外性能
  • 英文关键词:Polydopamine;;Waterborne Polyurethane;;Mechanical properties;;Anti-ultraviolet capability;;Thermostability
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:四川大学空天科学与工程学院;四川大学高分子科学与工程学院;四川大学高分子材料工程国家重点实验室;
  • 出版日期:2019-03-13 18:04
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金(基金号51503133);; 四川省科技厅(项目号2018GZ0458)资助项目
  • 语种:中文;
  • 页:GFXB201907006
  • 页数:11
  • CN:07
  • ISSN:11-1857/O6
  • 分类号:66-76
摘要
通过原位聚合法制备了水性聚氨酯(WPU)/聚多巴胺粒子(PDA)复合材料,并进一步研究了PDA粒子的引入对WPU的热性能、力学性能及抗紫外老化性能的影响.首先通过多巴胺盐酸盐在氢氧化钠碱液中自发氧化聚合得到了平均粒径约为150 nm的PDA粒子.随后以异佛尔酮二异氰酸酯、聚四氢呋喃二醇、2,2-二羟甲基丙酸为主要原料反应得到亲水性聚氨酯预聚体,然后加入PDA粒子的水分散液对预聚体进行乳化,最后以1,4-丁二醇扩链得到WPU/PDA复合材料.结果表明,PDA粒子的加入显著提高了WPU的热稳定性和力学性能.与纯WPU相比,当PDA粒子含量为0.5 wt%时,WPU/PDA复合材料的起始降解温度提高了22.7°C,拉伸强度和杨氏模量分别提高了37%和78%.同时,PDA粒子的加入也极大阻碍了紫外辐照老化后WPU表面裂纹的形成,有效抑制了材料的氧化降解.这主要是因为PDA粒子与WPU硬段的氨基甲酸酯基和脲基之间较强的相互作用以及PDA粒子本身的紫外吸收和自由基捕获能力.
        Waterborne polyurethane(WPU)/polydopamine(PDA) nanoparticle composites were successfully fabricated via in situ polymerization and effects of PDA nanoparticles on thermal properties, mechanical properties and anti-ultraviolet aging properties of WPU were investigated. Firstly, PDA nanoparticles with an average size of 150 nm were synthesized through spontaneous oxidation polymerization of dopamine hydrochloride in sodium hydroxide(NaOH) solution at 50 °C for 5 h under stirring. And it was retained in aqueous dispersion. Then, isophoeone diisocyanate(IPDI), polytetrahydrofuran diol(PTMG-1000), 2,2-dimethylol propionic acid(DMPA) were reacted to prepare the hydrophilic poliurethane prepolymer at 80 °C for2 h under stirring, and then PDA nanoparticles in aqueous dispersion were added into the prepolymer to emulsify simultaneously for 30 min. Finally, 1,4-butanediol(BDO) was used as a small molecule chain extender to prepare WPU/PDA composites. It was found that both the thermostability and mechanical properties of WPU is enchanced by the addition of PDA nanoparticles. Especially when the concentration of PDA nanoparticles is 0.5 wt%, the initial degradation temperature of WPU/PDA composites is enhanced by 22.7 °C, and the tensile strength and Young's modulus is increased by 37% and 78%, respectively, compared with pure WPU. Meanwhile, with the addition of PDA nanoparticles, the formation of cracks on the surface of WPU after ultraviolet irradiation is obviously hindered, and the decline of thermostability caused by ultraviolet irradiation is effectively suppressed.This can be mainly attributed to the impediment of the bond breakage during the ultraviolet irradiation due to the interaction of PDA nanoparticles with the urethane bonds and urea bonds of the hard segment of WPU.
引文
1Zhang S W,Zhang D D,Zhen L,Yang Y F,Meng S,Kong Z W,Yang W,Bai H Y,Dong W F.JCT Res,2018,15(6):1333-1341
    2Zhen Z,Luo S,Kai Y,Wu X J,Ren T B.RSC Adv,2017,7(67):42296-42304
    3Kim B K,Seo J W,Han M J.Eur Polym J,2003,39(1):85-91
    4Rageh M M,Elgebaly R H.Mutat Res Genet Toxicol Environ Mutagen,2018,828:15-22
    5Xiao M,Hu Z Y,Wang Z,Li Y W,Tormo A D,Le Thomas N,Wang B X,Gianneschi N C,Shawkey M D,Dhinojwala A.Sci Adv,2017,3(9):e1701151
    6Wang Y,Li T,Wang X F,Ma P M,Bai H Y,Dong W F,Xie Y,Chen M Q.Biomacromolecules,2016,17(11):3782-3789
    7Shanmuganathan K,Cho J H,Iyer P,Baranowitz S,Ellison C J.Macromolecules,2016,44(24):9499-9507
    8Ju K Y,Lee Y,Lee S,Park S B,Lee J K.Biomacromolecules,2011,12(3):625-632
    9Phua S L,Yang L,Toh C L,Huang S,Tsakadze Z,Lau S K,Mai Y W,Lu X.ACS Appl Mater Interfaces,2012,4(9):4571-4578
    10Pei A,Malho J M,Ruokolainen J,Zhou Q,Berglund L A.Macromolecules,2011,44(11):4422-4427
    11Yao X L,Qi X D,He Y L,Tan D S,Chen F,Fu Q.ACS Appl Mater Interfaces,2014,6(4):2497-2507
    12Saralegi A,Fernandes S C M,Alonsovarona A,Palomares T,Foster E J,Weder C,Eceiza A,Corcuera M A.Biomacromolecules,2013,14(12):4475-4482
    13Mahmood K,Zia K M,Aftab W,Zuber M,Tabasum S,Noreen A,Zia F.Int J Biol Macromol,2018,113:150-158
    14Xi Z Y,Xu Y Y,Zhu L P,Wang Y,Zhu B K.J Memb Sci,2009,327(1):244-253
    15Liu Y L,Ai K L,Lu L H.Chem Rev,2014,114(9):5057-5115
    16Sheng W B,Li W,Zhang G X,Tong Y B,Liu Z Y,Jia X.New J Chem,2015,39(4):2752-2757
    17Wang Y,Wang Z,Ma P M,Bai H Y,Dong W F,Xie Y,Chen M Q.RSC Adv,2015,5(89):72691-72698
    18Bandyopadhyay P,Nguyen T T,Li X,Kim N H,Lee J H.Compos Part B-Eng,2017,117:101-110
    19Yu R L,Raghu A V,Han M J,Kim B K.Macromol Chem Phys,2010,210(15):1247-1254
    20Cao X,Dong H,Li C M.Biomacromolecules,2007,8(3):899-904
    21Wu S L,Shi T J,Zhang L Y.High Perform Polym,2015,28(4):61-62
    22Han Y T,Cheng Z,Dong W,Zhang F,Xin Z Y.J Thermoplast Compos,2015,30(1):107-120
    23Zhang Y H,Xia Z B,Huang H,Chen H Q.J Anal Appl Pyrolys,2009,84(1):89-94
    24Meredith P,Sarna T.Pigm Cell Melanoma R,2010,19(6):572-594
    25St?pieńK,Dzier??ga-L?cznar A,Kurkiewicz S,Tam I.J Am Soc Mass Spectrom,2009,20(3):464-468
    26Perrin F X,Irigoyen M,Aragon E,Vernet J L.Polym Degrad Stab,2000,70(3):469-475
    27Wilhelm C,Gardette J L.Polymer,1997,38(16):4019-4031
    28Zhang B,Sun Z,Bai Y T,Zhuang H Q,Ge D T,Shi W,Sun Y N.RSC Adv,2016,6(82):78378-78384
    29Dong W F,Wang Y,Huang C Q,Xiang S F,Ma P M,Ni Z B,Chen M Q.J Therm Anal Calorim,2014,115(2):1661-1668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700