含纳米流体热管性能计算模型的分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of behaviour of computational model to evaluate performance of heat pipe containing nanofluids
  • 作者:Rodrigo ; Vidonscky ; PINTO ; Flávio ; Augusto ; Sanzovo ; FIORELLI
  • 英文作者:Rodrigo Vidonscky PINTO;Flávio Augusto Sanzovo FIORELLI;University of S?o Paulo, Escola Politécnica, Mechanical Engineering Department;
  • 关键词:热管 ; 纳米流体 ; 计算分析 ; 颗粒体积分数
  • 英文关键词:heat pipe;;nanofluid;;computational analysis;;particle volume fraction
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:University of S?o Paulo, Escola Politécnica, Mechanical Engineering Department;
  • 出版日期:2019-05-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:v.26
  • 基金:CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil) for the scholarship to Prof. Rodrigo Vidonscky Pinto
  • 语种:英文;
  • 页:ZNGY201905022
  • 页数:21
  • CN:05
  • ISSN:43-1516/TB
  • 分类号:290-310
摘要
将纳米流体应用在热管中进行热阻降低实验,可以得到理想的实验结果。然而,为了表征纳米流体在热管中的行为,目前所建立的热管和纳米流体的研究模型尚缺少深入讨论,特别是对于基础流体和纳米颗粒如碳纳米管或乙二醇的研究。因此,本研究先建立热管中纳米流体的流动方程,根据文献中热管的数据进行模拟。结果表明,实验测得的平均温度与预测结果有定性的一致性,误差在1.5%和23.9%之间。此外,实验得到的热管温度分布不能仅通过适当的热性能数值计算得到,这也表明沸腾现象比现有的应用模型更复杂。通过结合不同的性能模型,可以观察到纳米流体在此应用中存在最优的颗粒体积分数。
        Application of nanofluids in heat pipes usually presents satisfactory experimental results regarding a thermal resistance reduction of the heat pipe. However, the existing computational studies connecting heat pipes and nanofluids lack a deeper discussion regarding the validity of the models currently used for representing the behaviour of a nanofluid in a heat pipe, particularly for unusual base fluids and nanoparticles such as carbon nanotubes or ethylene glycol. Thus, this comparative study presents the results of a set of computational simulations using pre-established equations for modelling a nanofluid in a heat pipe with experimental data from the literature. The results show agreement with the expected behaviour qualitatively and the presented maximum variations between 1.5% and 23.9% in comparison to the experimentally measured average temperatures. Also, the experimentally obtained temperature distribution of a heat pipe could not be reached numerically only with the use of adequate thermal properties, indicating that the boiling phenomenon is more complex than the current model used for computational simulations. Moreover, the existence of an optimal particle volume fraction for using nanofluids in this application could be observed by combining different properties models.
引文
[1]MAHMOODI M,KANDELOUSI S.Kerosene-alumina nanofluid flow and heat transfer for cooling application[J].Journal of Central South University,2016,23:983-990.
    [2]SARI M R,KEZZAR M,ADJABI,R.Heat transfer of copper/water nanofluid flow through converging-diverging channel[J].Journal of Central South University,2016,23:484-496.
    [3]SELIMEFENDIGIL F,?ZTOP H F.Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders[J].International Journal of Heat and Mass Transfer,2018,117:331-343.
    [4]SIAVASHI M,BAHRAMI H R T,AMINIAN E.Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using gradient and multilayered porous foams[J].Applied Thermal Engineering,2018,138:465-474.
    [5]SELIMEFENDIGIL F,?ZTOP H F.Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity[J].International Journal of Heat and Mass Transfer,2019,129:265-277.
    [6]SELIMEFENDIGIL F,?ZTOP H F.Numerical analysis and ANFIS modeling for mixed convection of CNT-water nanofluid filled branching channel with an annulus and a rotating inner surface at the junction[J].International Journal of Heat and Mass Transfer,2018,127:583-599.
    [7]LIU Z H,LI Y Y.A new frontier of nanofluid researchApplication of nanofluids in heat pipes[J].International Journal of Heat and Mass Transfer,2012,55(23,24):6786-6797.
    [8]BUSCHMANN M H.Nanofluids in thermosyphons and heat pipes:Overview of recent experiments and modelling approaches[J].International Journal of Thermal Sciences,2013,72:1-17.
    [9]SURESHKUMAR R,MOHIDEEN S T,NETHAJI N.Heat transfer characteristics of nanofluids in heat pipes:A review[J].Renewable and Sustainable Energy Reviews,2013,20:397-410.
    [10]MAHIAN O,KOLSI L,AMANI M,ESTELLéP,AHMADIG,KLEINSTREUER C,MARSHALL J S,TAYLOR R A,ABU-NADA E,RASHIDI S,NIAZMAND H,WONGWISES S,HAYAT T,KASAEIAN A,POP I.Recent advances in modeling and simulation of nanofluid flows-Part II:Applications[J].Physics Reports,2019,791:1-59.
    [11]MAHJOUB S,MATABROSHAN A.Numerical simulation of a conventional heat pipe[J].World Academy of Science,Engineering and Technology,2008,39:117-122.
    [12]GAVTASH B,HUSSAIN K,LAYEGHI M,et al.Numerical simulation of the effects of nanofluid on a heat pipe thermal performance[J].World Academy of Science,Engineering and Technology,2012,68:549-555.
    [13]ZERBINI E J G J.Um estudo analítico-experimental de um‘heat pipe’de temperatura moderada[D].University of S?o Paulo,1984.(in Portuguese)
    [14]XUAN Y,ROETZEL W.Conceptions for heat transfer correlation of nanofluids[J].International Journal of Heat and Mass Transfer,2000,43:3701-3707.
    [15]AHMED A,NADEEM S.Biomathematical study of time-dependent flow of a Carreau nanofluid through inclined catheterized arteries with overlapping stenosis[J].Journal of Central South University,2017,24:2725-2744.
    [16]SIAVASHI M,JAMALI M.Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow[J].Journal of Central South University,2017,24:1850-1865.
    [17]SIAVASHI M,JAMALI M.Heat transfer and entropy generation analysis of turbulent flow of TiO2-water nanofluid inside annuli with different radius ratios using two-phase mixture model[J].Applied Thermal Engineering,2016,100:1149-1160.
    [18]SIAVASHI M,JOIBARY S M M.Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media[J].Journal of Thermal Analysis and Calorimetry,2019,135(2):1595-1610.
    [19]BUONGIORNO J.Convective transport in nanofluids[J].Journal of Heat Transfer,2005,128(3):240-250.
    [20]MAHIAN O,KOLSI L,AMANI M,ESTELLéP,AHMADIG,KLEINSTREUER C,MARSHALL J S,SIAVASHI MTAYLOR R A,NIAZMAND H,WONGWISES S,HAYAT T,KOLANJIYIL A,KASAEIAN A,POP I.Recent advances in modeling and simulation of nanofluid flows-Part I:Fundamental and theory[J].Physics Reports,2019,790:1-48.
    [21]PAK B C,CHO Y I.Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J].Experimental Heat Transfer:A Journal of Thermal Energy Generation,Transport,Storage,and Conversion,1998,11(2):151-170.
    [22]SHAFAHI M,BIANCO V,VAFAI K,MANCA O.An investigation of the thermal performance of cylindrical heat pipes using nanofluids[J].International Journal of Heat and Mass Transfer,2010,53(1-3):376-383.
    [23]RASHIDI F,NEZAMABAD N,MOSAVARI.Experimental investigation of convective heat transfer coefficient of CNTs nanofluid under constant heat flux[C]//World Congress on Engineering.London:WCE,2011.
    [24]O'HANLEY H,BUONGIORNO J,MCKRELL T,HU LW.Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry[J].Advances in Mechanical Engineering,2012,4:1-6.
    [25]MISHRA P C,MUKHERJEE S,NAYAK S K,PANDA A.Abrief review on viscosity of nanofluids[J].International Nano Letters,2014,4(4):109-120.
    [26]HALELFADL S,ESTELLéP,ALADAG B,DONER N,MARéT.Viscosity of carbon nanotubes water based nanofluids-Influence of concentration and temperature[J].International Journal of Thermal Sciences,2013,71:111-117.
    [27]EINSTEIN A.Eine neue bestimmung der moleküldimensionen[J].Annals of Physics,906,324(2):289-306.
    [28]NIELSEN L E.Generalized equation for the elastic moduli of composite materials[J].Journal of Applied Physics,1970,41(11):4626-4627.
    [29]BATCHELOR G K.The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J].Journal of Fluid Mechanics,1977,83(1):97-117.
    [30]BRINKMAN H C.The viscosity of concentrated suspensions and solutions[J].The Journal of Chemical Physics,1952,20(4):571-581.
    [31]NGUYEN C T,DESGRANGES F,ROY G,GALANIS N,MARE T,BOUCHER S,ANGUE MINTSA H.Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon[J].International Journal of Heat and Fluid Flow,2007,28(6):1492-1506.
    [32]CHOW T S.Viscosities of concentrated dispersions[J].Physical Review E,1993,48(3):1977-1983.
    [33]MARON S H,PIERCE P E.Application of Ree-Eyring generalized flow theory to suspensions of spherical particles[J].Journal of Colloid Science,1956,11(1):80-95.
    [34]BRENNER H,CONDIFF D W.Transport mechanics in systems of orientable particles.Part IV:Convective transport[J].Journal of Colloid and Interface Science,1974,47(1):199-264.
    [35]KRIEGER I M,DOUGHERTY T J.A mechanism for non-Newtonian flow in suspension of rigid spheres[J].Transactions of the Society of Rheology,1959,3(1):137-152.
    [36]LAMAS B,ABREU B,FONSECA A,MARTINS N,OLIVEIRA M S A.Critical analysis of the thermal conductivity models for CNT based properties[J].International Journal of Thermal Sciences,2014,78:65-76.
    [37]SUNDAR L S,RAMANA E V,SINGH M K,SOUSA A CM.Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications:An experimental study[J].International Communications in Heat and Mass Transfer,2014,56:86-95.
    [38]PASTORIZA-GALLEGO M J,LUGO L,CABALEIRO D,LEGIDO J L,PI?EIRO M M.Thermophysical profile of ethylene glycol-based ZnO nanofluids[J].Applied Energy,2014,135:548-559.
    [39]KWAK K,KIM C.Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol[J].Korea-Australia Rheology Journal,2005,17(2):35-40.
    [40]LIU M S,LIN M C C,HUANG I T,WANG C C.Enhancement of thermal conductivity with carbon nanotube for nanofluids[J].International Communications in Heat and Mass Transfer,2005,32(9):1202-1210.
    [41]YU W,XIE H,CHEN L,LI Y.Investigation of thermal conductivity and viscosity of ethylene glycol based ZnOnanofluid[J].Thermochimica Acta,2009,491(1,2):92-96.
    [42]HAMILTON R L,CROSSER O K.Thermal conductivity of heterogeneous two-component systems[J].Industrial and Engineering Chemistry Fundamentals,1962,1(3):187-191.
    [43]NAN C W,SHI Z,LIN Y.A simple model for thermal conductivity of carbon nanotube-based composites[J].Chemical Physics Letters,2003,375(5,6):666-669.
    [44]XUE Q Z.Model for thermal conductivity of carbon nanotube-based composites[J].Physica B:Condensed Matter,2005,368(1-4):302-307.
    [45]WASP F J.Solid-liquid flow slurry pipeline transportation[M].Berlin:Trans Tech Publications,1977.
    [46]CHEN H S,DING Y L,HE Y R,TAN C Q.Rheological behaviour of ethylene glycol based titania nanofluids[J].Chemical Physics Letters,2007,444(4-6):333-337.
    [47]JEFFREY D J.Conduction through a random suspension of spheres[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,1973,335(1602):355-367.
    [48]YU W,CHOI S.The role of interfacial layers in the enhanced thermal conductivity of nanofluids:a renovated Maxwell model[J].Journal of Nanoparticle Research,2003,5(1,2):167-171.
    [49]TURIAN R M,SUNG D J,HSU F L.Thermal conductivity of granular coals,coal-water mixtures and multi-solid quid suspensions[J].Fuel,1991,70(10):1157-1172.
    [50]MURSHED S M S,LEONG K C,YANG C.Enhanced thermal conductivity of Ti O2-water based nanofluids[J].International Journal of Thermal Sciences,2005,44(4):367-373.
    [51]LIU Z H,LU L.Thermal performance of an axially microgrooved heat pipe using carbon nanotube suspensions[J].Journal of Thermophysics and Heat Transfer,2009,23(1):170-175.
    [52]PUTRA N,SEPTIADI W N,RAHMAN H,IRWANSYAH R.Thermal performance of screen mesh wick heat pipes with nanofluids[J].Experimental Thermal and Fluid Science,2012,40:10-17.
    [53]CHI S W.Heat pipe theory and practice:A sourcebook[M].New York:Hemisphere Publishing Corporation,1976.
    [54]YANG D J,ZHANG Q,CHEN G,YOON S F,AHN J,WANG S G,ZHOU Q,WANG Q,LI J Q.Thermal conductivity of multiwalled carbon nanotubes[J].Physical Review B,2002,66:165440.
    [55]The MEGlobal Group of Companies.Ethylene glycolproduct guide[OL].[2018-07-27].http://www.meglobal.biz/media/product_guides/MEGlobal_MEG.pdf.
    [56]MARTíNEZ I.Properties of gases[OL].[2018-05-15].http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf.
    [57]GREEN D,PERRY R.Perry’s chemical engineers'handbook[M].8th ed McGraw-Hill Professional,2007.
    [58]MORKO?H,?ZGüRü.Zinc oxide:Fundamentals,materials and device technology[M].Wiley-VCH,2009.
    [59]KEMPERS R,ROBINSON A J,EWING D,CHING C Y.Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe[J].International Journal of Heat and Mass Transfer,2008,51(25,26):6039-6046.
    [60]WONG S C.The evaporation mechanism in the wick of copper heat pipes[M].Springer,2014.
    [61]ANSYS CFX-Solver theory guide[M].Vol.15.0.US:ANSYS Inc.,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700