铌酸锂晶体的研磨损伤层研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Damage Layer of Lithium Niobate Crystals after Grinding
  • 作者:李清连 ; 孙军 ; 吴婧 ; 张玲 ; 许京军
  • 英文作者:LI Qing-lian;SUN Jun;WU Jing;ZHANG Ling;XU Jing-jun;School of Physics,Nankai University;MOE Key Laboratory of Weak-Light Nonlinear Photonics,Nankai University;Collaborative Innovation Center of Extreme Optics,Shanxi University;
  • 关键词:铌酸锂晶体 ; 研磨 ; 损伤层
  • 英文关键词:lithium niobate crystal;;grinding;;subsurface damage
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:南开大学物理科学学院;南开大学教育部弱光非线性光子学重点实验室;山西大学极端光学协同创新中心;
  • 出版日期:2019-05-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.247
  • 基金:国家自然科学基金(61575099)
  • 语种:中文;
  • 页:RGJT201905018
  • 页数:6
  • CN:05
  • ISSN:11-2637/O7
  • 分类号:126-131
摘要
研究了铌酸锂晶体在研磨过程中产生的表面损伤层。首先通过激光共聚焦显微镜观察了研磨后晶体的表面形貌,通过原子力显微镜测试了研磨后晶体表面的粗糙度,分别通过角度抛光法及直接抛光层层去除的方法测量了损伤层的深度。分析了损伤层的组成及影响因素,对优化研磨工艺参数、提高研磨效率具有指导意义。
        The surface damage layer of lithium niobate crystal induced by grinding was researched. The surface morphology of LN crystal after grinding was observed by laser confocal microscopy,and the atomic force microscope was used to measure the roughness of samples. The depth of the damage layer was described digitally by angle polishing method and direct polishing method which remove the damage layer by layer. The factors,which affecting the surface damage layer of lithium niobate crystal after grinding were analyzed,it can guide the direction to optimize the technology of improving the efficiency and quality.
引文
[1]张玲,韩文卿,孙军,等.高温度稳定性系列铌酸锂电光调Q开关的研制[J].人工晶体学报,2010,39(4):931-935.
    [2]王富章,陈彬,孙军,等.低应力铌酸锂电光调Q开关的研究[J].人工晶体学报,2013,42(7):1315-1318.
    [3] Tian T,Kong,Y. F.,Liu S. G,et al. Fast UV-Vis Photorefractive Response of Zr and Mg Codoped Li NbO3:Mo[J]. Optics Express,2013,21(9):10460-10466.
    [4]孙军.高性能铌酸锂晶体与光电器件产品化的关键技术研究[D].天津:南开大学,2008.
    [5] Susumu Kato,Sunao Kurimura,Hwan Hong Lim,et al. Induced Heating by Nonlinear Absorption in Li NbO3-type Crystals Under Continuouswave Laser Irradiation[J]. Optical Materials,2015,40:10-13.
    [6]沈兆国,董涛,孟冬冬,等.百瓦级高重频腔倒空电光调Q激光器[J].光电子技术,2014,34(4):308-311.
    [7]孙承伟,陆启生,范正修,等.激光辐照效应[M].北京,国防工业出版社,2002.
    [8]郑万国,祖小涛,袁晓东,等.高功率激光装置的负载能力及其相关物理问题[M].北京,科学出版社,2014.
    [9]王卓,吴宇列,戴一凡,等.光学材料抛光亚表面损伤检测及材料去除机理[J].国防科技大学学报,2009,31(2):107-111.
    [10]马斌,沈正祥,张众,等.低亚表面损伤石英光学基底的加工和检测技术[J].强激光与粒子束,2010,22(9):2181-2185.
    [11] Chen N,Zhang Q,Xu Q,et al. Studies on Subsurface Damaged Election and Wet-etching Process of K9 Optics[J]. High Power Laser and Particle Beams,2005,17(9):1289-1293.
    [12] Park K. H,Kim H. J,Chang O. M,et al. Effects of Pad Properties on Material Removal in Chemical Mechanical Polishing[J]. Journal of Materials Processing Technology,2007,187-188:73-76.
    [13] Feit M. D.,Rubenchik A. M.. Influence of Subsurface Cracks on Laser Induced Surface Damage[J]. Proc. SPIE,2004,5273:264-272.
    [14]王卓.光学材料加工亚表面损伤检测及控制关键技术研究[D].长沙:国防科学技术大学,2008.
    [15]汉语.微裂纹对空间光学元件使用寿命的影响研究[D].长春:长春理工大学,2006.
    [16]朱楠楠,朱永伟,李军,等.铌酸锂晶体的研磨亚表面损伤深度[J].光学精磨工程,2015,23(12):3387-3394.
    [15] Shen J,Liu S,Yi K,et al. Subsurface Damage in Optical Substrates[J]. Optics,2005,116:288-294.
    [16]王毅.亚表面缺陷诱导损伤的机理与实验技术研究[D].绵阳:中国工程物理研究院,2005.
    [17]高平.光学玻璃研磨加工后亚表面损伤研究[D].南京:南京航空航天大学,2012.
    [18]李改灵,吴宇列,王卓,等.光学材料亚表面损伤深度破坏性测量技术的实验研究[J].航空精密制造技术,2006,42(6):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700