色散混合显隐式时域有限差分法的石墨烯仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphene simulation by using dispersive hybrid implicit-explicit finite-difference time-domain method
  • 作者:徐健勋 ; 傅伟杰
  • 英文作者:XU Jianxun;FU Weijie;Hefei University of Technology;
  • 关键词:色散混合显隐式 ; 时域有限差分方法 ; 石墨烯 ; 电磁特性 ; 石墨烯吸收体
  • 英文关键词:dispersive hybrid implicit-explicit;;finite-difference time-domain method;;graphene;;electromagnetic properties;;graphene absorber
  • 中文刊名:DBKX
  • 英文刊名:Chinese Journal of Radio Science
  • 机构:合肥工业大学;
  • 出版日期:2018-09-12 10:57
  • 出版单位:电波科学学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(No.41676167)
  • 语种:中文;
  • 页:DBKX201902016
  • 页数:5
  • CN:02
  • ISSN:41-1185/TN
  • 分类号:105-109
摘要
应用色散混合显隐式时域有限差分(hybrid implicit-explicit finite-difference time-domain, HIE-FDTD)法分析了石墨烯的电磁特性.这种方法的时间步长大小不受石墨烯层的剖分网格大小的限制,数值算例表明,HIE-FDTD方法是一种精度较高的有效算法,它的计算时间比FDTD方案大大减少.数值计算结果显示,设计的石墨烯吸收体通过改变石墨烯片的化学势,可以有效地调整吸收体的吸收峰.同时发现,在太赫兹频率下石墨烯吸收体的吸收率显示出一定的周期性并呈现栅形特性,这一特性可以对石墨烯器件的设计生产提供一些思路.
        This paper applies the dispersive hybrid implicit-explicit finite-difference time-domain method(HIE-FDTD) to analyze the electromagnetic properties of graphene. The time step size of this method is not limited by the mesh size of the graphene layer. Numerical examples show that the HIE-FDTD method is an efficient algorithm with high precision, and its calculation time is greatly reduced compared to the FDTD scheme.The numerical calculation result shows that the designed graphene absorber can effectively adjust the absorption peak of the absorber by changing the chemical potential of the graphene sheet with using the HIE-FDTD method. The absorption rate of graphene absorber at terahertz frequency shows a certain periodicity and exhibits grid-like characteristics, and this feature can provide some ideas for the design and production of graphene devices.
引文
[1] TAFLOVE A,HAGNESS S C.Computational electrodynamics:the finite-difference time-domain method[M].Artech house,2005:107-164.
    [2] ZHANG Q,QIU S,ZHOU B.A hybrid implicit-explicit FDTD method with an intermediate field[C]//7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM).IEEE,2015:157-160.
    [3] CHEN J,WANG J.Implementation of connection boundary for HIE-FDTD method[J].Microwave and optical technology letters,2008,50(5):1347-1352.
    [4] TAMAGNONE M,GOMEZ-DIAZ J S,MOSIG J R,et al.Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets[J].Journal of applied physics,2012,112(11):114915.
    [5] LLATSER I,KREMERS C,CABELLOS-APARICIO A,et al.Graphene-based nano-patch antenna for terahertz radiation[J].Photonics and nanostructures-fundamentals and applications,2012,10(4):353-358.
    [6] CHEN J,WANG J.Three-dimensional dispersive hybrid implicit-explicit finite-difference time-domain method for simulations of graphene[J].Computer physics communications,2016,207:211-216.
    [7] SALSKI B.An FDTD model of graphene intraband conductivity[J].IEEE transactions on microwave theory and techniques,2014,62(8):1570-1578.
    [8] SOUNAS D L,CALOZ C.Gyrotropy and non-reciprocity of graphene for microwave applications[J].IEEE transactions on microwave theory and techniques,2012,60(4):901-914.
    [9] GUSYNIN V P,SHARAPOV S G,CARBOTTE J P.Magneto-optical conductivity in graphene[J].Journal of physics:condensed matter,2006,19(2):026222.
    [10] WANG J,ZHOU B,et al.An efficient 3-D HIE-FDTD method with weaker stability condition[J].IEEE transactions on antennas and propagation,2016,64(3):998-1004.
    [11] CHEN J,GUO J,TIAN C.Analyzing the shielding effectiveness of a graphene-coated shielding sheet by using the HIE-FDTD method[J].IEEE transactions on electromagnetic compatibility,2018,60(2):362-367.
    [12] 陈娟,王建国,许宁.弱条件稳定时域有限差分方法[M].北京:科学出版社,2016:87-99.
    [13] XU N,CHEN J,WANG J,et al.Dispersion HIE-FDTD method for simulating graphene-based absorber[J].IET microwaves,antennas & propagation,2017,11(1):92-97.
    [14] WANG X H,YIN W Y,CHEN Z.Matrix exponential FDTD modeling of magnetized graphene sheet[J].IEEE antennas and wireless propagation letters,2013,12:1129-1132.
    [15] 葛德彪,闫玉波.电磁波时域有限差分方法[M].2版.西安:西安电子科技大学出版社,2005:36-37.
    [16] LV B,FU J,WANG D,et al.Frequency adjustable cross-shaped absorber based on graphene[C]//IEEE International Conference on Electronic Information and Communication Technology.IEEE,2016:563-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700