Functional Superoxide Dismutase Mimics Become Diverse: From Simple Compounds on Prebiotic Earth to Nanozymes
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Functional Superoxide Dismutase Mimics Become Diverse: From Simple Compounds on Prebiotic Earth to Nanozymes
  • 作者:Leon ; Bixenmann ; Jiuyang ; He ; Minmin ; Liang ; Wolfgang ; Tremel
  • 英文作者:Leon Bixenmann;Jiuyang He;Minmin Liang;Wolfgang Tremel;Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitt;Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology,Institute of Biophysics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:nanozyme;;SOD mimic;;superoxide dismutase mimic;;nanoparticle
  • 中文刊名:SHSW
  • 英文刊名:Progress in Biochemistry and Biophysics
  • 机构:Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitt;Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology,Institute of Biophysics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2018-02-07 17:02
  • 出版单位:生物化学与生物物理进展
  • 年:2018
  • 期:v.45
  • 语种:英文;
  • 页:SHSW201802005
  • 页数:22
  • CN:02
  • ISSN:11-2161/Q
  • 分类号:53-74
摘要
Inorganic solids with enzyme-like activity are promising to overcome many restrictions of native enzymes in application.Especially attractive are nanoparticles with superoxide dismutase(SOD)activity,due to their ability to reduce the damaging properties of reactive oxygen species within cells and organism.This review discusses the necessary requirements for nanoparticles to have SOD activity and reveals a close relationship between catalysis on prebiotic earth and the recent SOD mimics.This review also aims to highlight the progress in the development of SOD mimicking nanoparticles.We give a broad overview of nanoparticles with SOD activity,based on their material make-up,to underline their increasing diversity.
        Inorganic solids with enzyme-like activity are promising to overcome many restrictions of native enzymes in application.Especially attractive are nanoparticles with superoxide dismutase(SOD)activity,due to their ability to reduce the damaging properties of reactive oxygen species within cells and organism.This review discusses the necessary requirements for nanoparticles to have SOD activity and reveals a close relationship between catalysis on prebiotic earth and the recent SOD mimics.This review also aims to highlight the progress in the development of SOD mimicking nanoparticles.We give a broad overview of nanoparticles with SOD activity,based on their material make-up,to underline their increasing diversity.
引文
[1]Yang Y,Bazhin A V,Werner J,et al.Reactive oxygen species in the immune system.Int Rev Immunol,2013,32(3):249-270
    [2]Karakoti A,Singh S,Dowding J M,et al.Redox-active radical scavenging nanomaterials.Chem Soc Rev,2010,39(11):4422-4432
    [3]Das S K,Vasudevan D M.Alcohol-induced oxidative stress.Life Sci,2007,81(3):177-187
    [4]Valavanidis A,Vlachogianni T,Fiotakis K.Tobacco smoke:Involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage,carcinogenesis and synergistic effects with other respirable particles.Int J Env Res Pub He,2009,6(2):445-462
    [5]Hanson K M,Gratton E,Bardeen C J.Sunscreen enhancement of UV-induced reactive oxygen species in the skin.Free Radical Bio Med,2006,41(8):1205-1212
    [6]Prasad S,Gupta S C,Tyagi A K.Reactive oxygen species(ROS)and cancer:Role of antioxidative nutraceuticals.Cancer Lett,2017,387(2):95-105
    [7]Mc Cord J M.Human disease,free radicals,and the oxidant/antioxidant balance.Clin Biochem,1993,26(5):351-357
    [8]Jenner P.Oxidative stress in Parkinson's disease.Ann Neurol,2003,53(3):26-38
    [9]Madamanchi N R,Vendrov A,Runge M S.Oxidative stress and vascular disease.Arterioscler Thromb Vasc Biol,2005,25(1):29-38
    [10]PraticòD,Basili S,Vieri M,et al.Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2alpha-Ⅲ,an index of oxidant stress.Am J Resp Crit Care,1998,158(6):1709-1714
    [11]Kaneto H,Katakami N,Matsuhisa M,et al.Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.Mediat Inflamm,2010,2010:1-11
    [12]GOEBEL K,Storck U,Neurath,et al.Intrasynovial orgotein therapy in rheumatoid arthritis.Lancet,1981,317(8228):1015-1017
    [13]Arzneimittelkommission der deutschenrzteschaft.orgoteinhaltige Arzneimittel.Deutschesrzteblatt,1994,91(8):A-517
    [14]Salvemini D,Riley D P,Cuzzocrea S.SOD mimetics are coming of age.Nat Rev Drug Discov,2002,1(5):367-374
    [15]Cleaves H J,Michalkova Scott A,Hill F C,et al.Mineral-organic interfacial processes:Potential roles in the origins of life.Chem Soc Rev,2012,41(16):5502-5525
    [16]Wei H,Wang E.Nanomaterials with enzyme-like characteristics(nanozymes):Next-generation artificial enzymes.Chem Soc Rev,2013,42(14):6060-6093
    [17]Shilo M,Sharon A,Baranes K,et al.The effect of nanoparticle size on the probability to cross the blood-brain barrier:An in vitro endothelial cell model.J Nanobiotechnol,2015,13(1):19
    [18]Heckman K L,De Coteau W,Estevez A,et al.Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain.ACS Nano,2013,7(12):10582-10596
    [19]Chen J,Patil S,Seal S,et al.Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides.Nat Nanotechnol,2006,1(2):142-150
    [20]Kim C K,Kim T,Choi I Y,et al.Ceria nanoparticles that can protect against ischemic stroke.Angew Chem Int Edit,2012,51(44):11039-11043
    [21]Hirst S M,Karakoti A S,Tyler R D,et al.Anti-inflammatory properties of cerium oxide nanoparticles.Small,2009,5(24):2848-2856
    [22]Dashtestani F,Ghourchian H,Eskandari K,et al.A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions.Microchim Acta,2015,182(5-6):1045-1053
    [23]Dugan L L,Turetsky D M,Du C,et al.Carboxyfullerenes as neuroprotective agents.Proc Natl Acad Sci USA,1997,94(17):9434-9439
    [24]Das S,Dowding J M,Klump K E,et al.Cerium oxide nanoparticles:Applications and prospects in nanomedicine.Nanomedicine,2013,8(9):1483-1508
    [25]Czochara R,Kusio J,Litwinienko G.Fullerene C60conjugated with phenols as new hybrid antioxidants to improve the oxidative stability of polymers at elevated temperatures.RSC Adv,2017,7(70):44021-44025
    [26]Korschelt K,Ragg R,Metzger C S,et al.Glycine-functionalized copper(Ⅱ)hydroxide nanoparticles with high intrinsic superoxide dismutase activity.Nanoscale,2017,9(11):3952-3960
    [27]Colín-García M,Heredia A,Cordero G,et al.Hydrothermal vents and prebiotic chemistry:a review.B Soc Geol Mex,2016,68(3):599-620
    [28]Bachmann B O.Biosynthesis:Is it time to go retro?Nat Chem Biol,2010,6(6):390-393
    [29]Horowitz N H.On the evolution of biochemical syntheses.Proc Natl Acad Sci USA,1945,31(6):153-157
    [30]Zuckerkandl E.The appearance of new structures and functions in proteins during evolution.J Mol Evol,1975,7(1):1-57
    [31]Li Y,He X,Yin J J,et al.Acquired superoxide-scavenging ability of ceria nanoparticles.Angew Chem Int Edit,2015,54(6):1832-1835
    [32]Celardo I,Pedersen J Z,Traversa E,et al.Pharmacological potential of cerium oxide nanoparticles.Nanoscale,2011,3(4):1411-1420
    [33]Asati A,Santra S,Kaittanis C,et al.Oxidase-like activity of polymer-coated cerium oxide nanoparticles.Angew Chem,2009,121(13):2344-2348
    [34]Kuchma M H,Komanski C B,Colon J,et al.Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles.Nanomed-Nanotechnol,2010,6(6):738-744
    [35]Jiao X,Song H,Zhao H,et al.Well-redispersed ceria nanoparticles:Promising peroxidase mimetics for H2O2and glucose detection.Anal Methods-UK,2012,4(10):3261-3267
    [36]Martin W,Baross J,Kelley D,et al.Hydrothermal vents and the origin of life.Nat Rev Microbiol,2008,6(11):805-814
    [37]Hansard S P,Easter H D,Voelker B M.Rapid reaction of nanomolar Mn(Ⅱ)with superoxide radical in seawater and simulated freshwater.Environ Sci Technol,2011,45(7):2811-2817
    [38]Barnese K,Gralla E B,Valentine J S,et al.Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds.Proc Natl Acad Sci USA,2012,109(18):6892-6897
    [39]Barnese K,Gralla E B,Cabelli D E,et al.Manganous phosphate acts as a superoxide dismutase.J Am Chem Soc,2008,130(14):4604-4606
    [40]Archibald F S,Fridovich I.Manganese,superoxide dismutase,and oxygen tolerance in some lactic acid bacteria.J Bacteriol,1981,146(3):928-936
    [41]Sheng Y,Butler Gralla E,Schumacher M,et al.Six-coordinate manganese(3+)in catalysis by yeast manganese superoxide dismutase.Proc Natl Acad Sci USA,2012,109(36):14314-14319
    [42]Miller A-F.Superoxide dismutases:Ancient enzymes and new insights.FEBS Lett,2012,586(5):585-595
    [43]Sheng Y,Abreu I A,Cabelli D E,et al.Superoxide dismutases and superoxide reductases.Chem Rev,2014,114(7):3854-3918
    [44]Yikilmaz E,Rodgers D W,Miller A F.The crucial importance of chemistry in the structure-function link:Manipulating hydrogen bonding in iron-containing superoxide dismutase.BiochemistryUS,2006,45(4):1151-1161
    [45]Koppenol W H,Levine F,Hatmaker T L,et al.Catalysis of superoxide dismutation by manganese aminopolycarboxylate complexes.Arch Biochem Biophys,1986,251(2):594-599
    [46]Sanchez R J,Srinivasan C,Munroe W H,et al.Exogenous manganous ion at millimolar levels rescues all known dioxygen-sensitive phenotypes of yeast lacking Cu Zn SOD.J Biol Inorg Chem,2005,10(8):913-923
    [47]Kozlov Y N,Zharmukhamedov S K,Tikhonov K G,et al.Oxidation potentials and electron donation to photosystemⅡof manganese complexes containing bicarbonate and carboxylate ligands.Phys Chem Chem Phys,2004,6(20):4905-4911
    [48]David R.Lide.CRC handbook of chemistry and physics:A readyreference book of chemical and physical data.85th ed.Boca Raton:CRC Press,Internet Version 2005,
    [49]Pierre J L,Fontecave M.Iron and activated oxygen species in biology:The basic chemistry.Bio Metals,1999,12(3):195-199
    [50]Rizvi M A.Complexation modulated redox behavior of transition metal systems(review).Russ J Gen Chem,2015,85(4):959-973
    [51]Tovmasyan A,Sheng H,Weitner T,et al.Design,mechanism of action,bioavailability and therapeutic effects of mn porphyrin-based redox modulators.Med Prin Pract,2013,22(2):103-130
    [52]Deutschmann O,Knzinger H,Kochloefl K,et al.Heterogeneous catalysis and solid catalysts//Ullmann’s Encyclopedia of Industrial Chemistry.Wiley-VCH Verlag Gmb H&Co.KGa A,2009
    [53]Hoffmann R.A chemical and theoretical way to look at bonding on surfaces.Rev Mod Phys,1988,60(3):601-628
    [54]Peter M,Flores Camacho J M,Adamovski S,et al.Trends in the binding strength of surface species on nanoparticles:How does the adsorption energy scale with the particle size?Angew Chem Int Edit,2013,52(19):5175-5179
    [55]Medford A J,Vojvodic A,HummelshΦj J S,et al.From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis.J Catal,2015,328:36-42
    [56]Shao M,Peles A,Shoemaker K.Electrocatalysis on platinum nanoparticles:Particle size effect on oxygen reduction reaction activity.Nano Lett,2011,11(9):3714-3719
    [57]Sun C,Li H,Chen L.Nanostructured ceria-based materials:Synthesis,properties,and applications.Energ Environ Sci,2012,5(9):8475-8505
    [58]Korsvik C,Patil S,Seal S,et al.Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles.Chem Commun,2007(10):1056-1058
    [59]Lanone S,Rogerieux F,Geys J,et al.Comparative toxicity of 24manufactured nanoparticles in human alveolar epithelial and macrophage cell lines.Part Fibre Toxicol,2009,6:14
    [60]Deshpande S,Patil S,Kuchibhatla S V,et al.Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide.Appl Phys Lett,2005,87(13):133113
    [61]Montini T,Melchionna M,Monai M,et al.Fundamentals and catalytic applications of Ce O2-based materials.Chem Rev,2016,116(10):5987-6041
    [62]Pirmohamed T,Dowding J M,Singh S,et al.Nanoceria exhibit redox state-dependent catalase mimetic activity.Chem Commun,2010,46(16):2736-2738
    [63]Torbrügge S,Reichling M,Ishiyama A,et al.Evidence of subsurface oxygen vacancy ordering on reduced Ce O2(111).Phys Rev Lett,2007,99(5):56101
    [64]Roger V L,Go A S,Lloyd-Jones D M,et al.Heart disease and stroke statistics--2012 update:A report from the American Heart Association.Circulation,2012,125(1):e2-e220
    [65]Kwon H J,Cha M Y,Kim D,et al.Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s Disease.ACS Nano,2016,10(2):2860-2870
    [66]Dowding J M,Song W,Bossy K,et al.Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death.Cell Death Differ,2014,21(10):1622-1632
    [67]Gao N,Dong K,Zhao A,et al.Polyoxometalate-based nanozyme:Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease.Nano Res,2016,9(4):1079-1090
    [68]Guan Y,Li M,Dong K,et al.Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-βpeptide.Biomaterials,2016,98:92-102
    [69]Li M,Shi P,Xu C,et al.Cerium oxide caged metal chelator:Anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment.Chem Sci,2013,4(6):2536-2542
    [70]Estevez A Y,Pritchard S,Harper K,et al.Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia.Free Radical Bio Med,2011,51(6):1155-1163
    [71]Ferri C P,Prince M,Brayne C,et al.Global prevalence of dementia:A Delphi consensus study.Lancet,2005,366(9503):2112-2117
    [72]Prince M,Wimo A,Guerchet M,et al.world Alzheimer report2015:The global impact of dementia an analysis of prevalence,encidence,cost and trends.Alzheimer’s Disease International,2015
    [73]Hamley I W.The amyloid beta peptide:A chemist's perspective.Role in Alzheimer's and fibrillization.Chem Rev,2012,112(10):5147-5192
    [74]Kajita M,Hikosaka K,Iitsuka M,et al.Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide.Free Radic Res,2007,41(6):615-626
    [75]Kim J,Takahashi M,Shimizu T,et al.Effects of a potent antioxidant,platinum nanoparticle,on the lifespan of Caenorhabditis elegans.Mech Ageing Dev,2008,129(6):322-331
    [76]Shen X,Liu W,Gao X,et al.Mechanisms of oxidase and superoxide dismutation-like activities of gold,silver,platinum,and palladium,and their alloys:A general way to the activation of molecular oxygen.J Am Chem Soc,2015,137(50):15882-15891
    [77]Zhang L,Laug L,Münchgesang W,et al.Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles.Nano Lett,2010,10(1):219-223
    [78]Bafana A,Dutt S,Kumar S,et al.Superoxide dismutase:An industrial perspective.Crit Rev Biotechnol,2011,31(1):65-76
    [79]Onizawa S,Aoshiba K,Kajita M,et al.Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke.Pulm Pharmacol Ther,2009,22(4):340-349
    [80]Xiong B,Xu R,Zhou R,et al.Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au-Pt nanocomposites.Talanta,2014,120:262-267
    [81]Takamiya M,Miyamoto Y,Yamashita T,et al.Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke-and tissue plasminogen activator-related brain damages in mice.Neuroscience,2012,221:47-55
    [82]Pedone D,Moglianetti M,Luca E de,et al.Platinum nanoparticles in nanobiomedicine.Chem Soc Rev,2017,46(16):4951-4975
    [83]Dismukes G C.Manganese enzymes with binuclear active sites.Chem Rev,1996,96(7):2909-2926
    [84]Terrak M,Kerff F,Langsetmo K,et al.Structural basis of protein phosphatase 1 regulation.Nature,2004,429(6993):780-784
    [85]Wang M Q,Ye C,Bao S-J,et al.Controlled synthesis of Mn3(PO4)2hollow spheres as biomimetic enzymes for selective detection of superoxide anions released by living cells.Microchim Acta,2017,184(4):1177-1184
    [86]Mugesh G,Singh N,Savanur M A,et al.Redox modulatory Mn3O4nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in Parkinson’s disease model.Angew Chem Int Edit,2017:14455-14459
    [87]Ragg R,Schilmann A M,Korschelt K,et al.Intrinsic superoxide dismutase activity of Mn O nanoparticles enhances the magnetic resonance imaging contrast.J Mater Chem B,2016,4(46):7423-7428
    [88]Howard M D,Hood E D,Greineder C F,et al.Targeting to endothelial cells augments the protective effect of novel dual bioactive antioxidant/anti-inflammatory nanoparticles.Mol Pharm,2014,11(7):2262-2270
    [89]Khalid H,Hanif M,Hashmi M,et al.Copper complexes of bioactive ligands with superoxide dismutase activity.MRMC,2013,13(13):1944-1956
    [90]TabbìG,Driessen W L,Reedijk J,et al.High superoxide dismutase activity of a novel,intramolecularly imidazolato-bridged asymmetric dicopper(Ⅱ)species.design,synthesis,structure,and magnetism of copper(Ⅱ)complexes with a mixed pyrazole imidazole donor set.Inorg Chem,1997,36(6):1168-1175
    [91]Czapski G,Goldstein S.The uniqueness of superoxide dismutase(SOD)-why cannot most copper compounds substitute sod in vivo?Free Radical Res Com,2009,4(4):225-229
    [92]Chen Z,Meng H,Xing G,et al.Acute toxicological effects of copper nanoparticles in vivo.Toxicol Lett,2006,163(2):109-120
    [93]Midander K,Cronholm P,Karlsson H L,et al.Surface characteristics,copper release,and toxicity of nano-and micrometer-sized copper and copper(Ⅱ)oxide particles:Across-disciplinary study.Small,2009,5(3):389-399
    [94]Karlsson H L,Cronholm P,Gustafsson J,et al.Copper oxide nanoparticles are highly toxic:A comparison between metal oxide nanoparticles and carbon nanotubes.Chem Res Toxicol,2008,21(9):1726-1732
    [95]Lenoir D,Schramm K W.Comment on"Glycine-functionalized copper(ii)hydroxide nanoparticles with high intrinsic superoxide dismutase activity"by K.Korschelt,R.Ragg,C.S.Metzger,M.Kluenker,M.Oster,B.Barton,M.Panthfer,D.Strand,U.Kolb,M.Mondeshki,S.Strand,J.Brieger,M.N.Tahir and W.Tremel,Nanoscale,2017,9,3952.Nanoscale,2017,9(40):15717-15718
    [96]Dickson L C,Lenoir D,Hutzinger O.Quantitative comparison of de novo and precursor formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incinerator postcombustion conditions.Environ Sci Technol,1992,26(9):1822-1828
    [97]Anacona J R,Azocar M,Nusetti O,et al.Crystal structure of the first SH-containing tetrahedral cobalt(Ⅱ)complex,[Co(quinoline)2(SH)2].Superoxide dismutase activity.Transit Metal Chem,2003,28(1):24-28
    [98]Dong J,Song L,Yin J J,et al.Co3O4nanoparticles with multienzyme activities and their application in immunohistochemical assay.ACS Appl Mater Inter,2014,6(3):1959-1970
    [99]Wang M Q,Ye C,Bao S J,et al.Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells.Biosens Bioelectron,2017,87:998-1004
    [100]Zhu X,Niu X,Zhao H,et al.Immobilization of superoxide dismutase on Pt-Pd/MWCNTs hybrid modified electrode surface for superoxide anion detection.Biosens Bioelectron,2015,67:79-85
    [101]Chen X J,West A C,Cropek D M,et al.Detection of the superoxide radical anion using various alkanethiol monolayers and immobilized cytochrome c.Anal Chem,2008,80(24):9622-9629
    [102]Sadeghian R B,Ostrovidov S,Han J,et al.Online monitoring of superoxide anions released from skeletal muscle cells using an electrochemical biosensor based on thick-film nanoporous gold.ACS Sensors,2016,1(7):921-928
    [103]Yuan L,Liu S,Tu W,et al.Biomimetic superoxide dismutase stabilized by photopolymerization for superoxide anions biosensing and cell monitoring.Anal Chem,2014,86(10):4783-4790
    [104]Shen X,Wang Q,Liu Y,et al.Manganese phosphate self-assembled nanoparticle surface and its application for superoxide anion detection.Sci Rep,2016,6:28989
    [105]Ma X,Hu W,Guo C,et al.DNA-templated biomimetic enzyme sheets on carbon nanotubes to sensitively in situ detect superoxide anions released from cells.Adv Funct Mater,2014,24(37):5897-5903
    [106]Yates M G,Nason A.Electron transport system of the chemoautotroph ferrobacillus ferrooxidans.J Biol Chem,1966,241(21):4872-4880
    [107]Visser SP de,Kumar D.Iron-containing enzymes:versatile catalysts of hydroxylation reactions in nature;[non-heme versus heme].Cambridge:Royal Society of Chemistry,2011
    [108]Gao L,Zhuang J,Nie L,et al.Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.Nat Nanotechnol,2007,2(9):577-583
    [109]Zhang W,Hu S,Yin J J,et al.Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers.JAm Chem Soc,2016,138(18):5860-5865
    [110]Wang W,Jiang X,Chen K.Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing.Chem Commun,2012,48(58):7289-7291
    [111]Krusic P J,Wasserman E,Keizer P N,et al.Radical reactions of C60.Science,1991,254(5035):1183-1185
    [112]Cataldo F,Milani P,Ros T.Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes:medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes.1st ed.sl:Springer Netherlands,2008
    [113]Dugan L L,Gabrielsen J K,Yu S P,et al.Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons.Neurobiol Dis,1996,3(2):129-135
    [114]Ali S S,Hardt J I,Quick K L,et al.A biologically effective fullerene(C60)derivative with superoxide dismutase mimetic properties.Free Radical Bio Med,2004,37(8):1191-1202
    [115]Vorobyov V,Kaptsov V,Gordon R,et al.Neuroprotective effects of hydrated fullerene C60:Cortical and hippocampal EEG interplay in an amyloid-infused rat model of Alzheimer's disease.JAlzheimers Dis,2015,45(1):217-233
    [116]Dugan L L,Lovett E G,Quick K L,et al.Fullerene-based antioxidants and neurodegenerative disorders.Parkinsonism Relat D,2001,7(3):243-246
    [117]Quick K L,Ali S S,Arch R,et al.A carboxyfullerene SODmimetic improves cognition and extends the lifespan of mice.Neurobiol Aging,2008,29(1):117-128
    [118]Kim J E,Lee M.Fullerene inhibitsβ-amyloid peptide aggregation.Biochem Bioph Res Co,2003,303(2):576-579
    [119]Xie L,Luo Y,Lin D,et al.The molecular mechanism of fullerene-inhibited aggregation of Alzheimer'sβ-amyloid peptide fragment.Nanoscale,2014,6(16):9752-9762
    [120]Lei J,Qi R,Xie L,et al.Inhibitory effect of hydrophobic fullerenes on theβ-sheet-rich oligomers of a hydrophilic GNNQQNY peptide revealed by atomistic simulations.RSC Adv,2017,7(23):13947-13956
    [121]Prylutska S,Grynyuk I,Matyshevska O,et al.C60fullerene as synergistic agent in tumor-inhibitory Doxorubicin treatment.Drugs R&D,2014,14(4):333-340
    [122]Acquah S F A,Penkova A V,Markelov D A,et al.Review---the beautiful molecule:30 years of C60and its derivatives.ECS J Solid State Sc,2017,6(6):M3155-M3162
    [123]Tarnuzzer R W,Colon J,Patil S,et al.Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage.Nano Lett,2005,5(12):2573-2577
    [124]Giri S,Karakoti A,Graham R P,et al.Nanoceria:A rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer.Plos One,2013,8(1):e54578
    [125]Davan R,Prasad RGSV,Jakka V S,et al.Cerium oxide nanoparticles promotes wound healing activity in in vivo animal model.J Bionanosci,2012,6(2):78-83
    [126]Mugesh G,Singh N,Savanur M A,et al.Redox modulatory Mn3O4nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in Parkinson’s disease model.Angew Chem Int Edit,2017:14455-14459
    [127]Halenova T I,Vareniuk I M,Roslova N M,et al.Hepatoprotective effect of orally applied water-soluble pristine C60fullerene against CCl 4-induced acute liver injury in rats.RSC Adv,2016,6(102):100046-100055
    [128]Jin H,Chen W Q,Tang X W,et al.Polyhydroxylated C60,fullerenols,as glutamate receptor antagonists and neuroprotective agents.J Neurosci Res,62(4):600-607

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700