基因编辑技术及其在疾病治疗中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gene editing technology and its recent progress in disease therapy
  • 作者:牛煦然 ; 尹树明 ; 陈曦 ; 邵婷婷 ; 李大力
  • 英文作者:Xuran Niu;Shuming Yin;Xi Chen;Tingting Shao;Dali Li;Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University;
  • 关键词:基因编辑 ; 基因治疗 ; 遗传病
  • 英文关键词:gene editing;;gene therapy;;genetic diseases
  • 中文刊名:YCZZ
  • 英文刊名:Hereditas
  • 机构:上海市调控生物学重点实验室华东师范大学生命科学学院;
  • 出版日期:2019-07-02 14:54
  • 出版单位:遗传
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目(编号:81670470,81873685)资助~~
  • 语种:中文;
  • 页:YCZZ201907002
  • 页数:17
  • CN:07
  • ISSN:11-1913/R
  • 分类号:20-36
摘要
基因编辑是一种基于人工核酸酶的遗传操作技术,能精确地对DNA或RNA进行高效改造。基因编辑除了在基础研究、生物育种和药物筛选等方面展现了巨大前景之外,在疾病治疗(特别是基因遗传病)领域的前景与进展尤为引人注目。本文在介绍基因编辑技术的发展及其在疾病治疗中不同策略的基础上,重点围绕遗传疾病的基因治疗研究,综述了基因编辑技术(包括单碱基编辑和表观调控等技术)在血液系统、肝脏、肌肉和神经系统等疾病治疗的研究进展,并对基因编辑治疗疾病的未来发展进行了展望。
        Gene editing is a genetic manipulation technology which utilizes bacterial nucleases to accurately and efficiently modify DNA or RNA. Gene editing has broad applications in basic research, breeding, and drug screening, and it is gaining validity and applicability to the therapy of many diseases especially genetic-based disease. In this review, we summarize the development of gene editing technology, its different strategies and applications in the treatment of disease,and the research of gene editing therapy for genetic diseases(including base editor and epigenetic regulation) in the treatment of disorders and diseases of the blood system, liver, muscle and nervous system. Finally, we discuss the future development prospects of gene editing therapy.
引文
[1]Chu SY,Weng CY.Introduction to genetic/rare disease and the application of genetic counseling.Hu Li Za Zhi,2017,64(5):11-17.褚思义,翁纯英.遗传/罕见病简介及遗传咨询的应用.护理杂志,2017,64(5):11-17.
    [2]Darrow JJ.Luxturna:FDA documents reveal the value of a costly gene therapy.Drug Discov Today,2019,24(4):949-954.
    [3]Han X,Ni W.Cost-Effectiveness analysis of glybera for the treatment of lipoprotein lipase deficiency.Value Health,2015,18(7):A756.
    [4]Schimmer J,Breazzano S.Investor outlook:rising from the ashes;GSK's European approval of strimvelis for ADA-SCID.Hum Gene Ther Clin Dev,2016,27(2):57-61.
    [5]Gupta SK,Shukla P.Gene editing for cell engineering:trends and applications.Crit Rev Biotechnol,2017,37(5):672-684.
    [6]Takata M,Sasaki MS,Sonoda E,Morrison C,Hashimoto M,Utsumi H,Yamaguchi-Iwai Y,Shinohara A,Takeda S.Homologous recombination and nonhomologous end-joining pathways of DNA doublestrand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells.EMBO J,1998,17(18):5497-5508.
    [7]Lieber MR,Ma Y,Pannicke U,Schwarz K.Mechanism and regulation of human non-homologous DNA endjoining.Nat Rev Mol Cell Bio,2003,4(9):712-720.
    [8]Joung JK,Sander JD.TALENs:a widely applicable technology for targeted genome editing.Nat Rev Mol Cell Bio,2012,14(1):49-55.
    [9]Sander JD,Joung JK.CRISPR-Cas systems for editing,regulating and targeting genomes.Nat Biotechnol,2014,32(4):347-355.
    [10]Komor AC,Badran AH,Liu DR.CRISPR-Based technologies for the manipulation of eukaryotic genomes.Cell,2017,168(1-2):20-36.
    [11]Marcaida MJ,Prieto J,Redondo P.Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering.Proc Natl Acad Sci USA,2008,105(44):16888-16893.
    [12]Smith J,Grizot S,Arnould S,Duclert A,Epinat JC,Chames P,Prieto J,Redondo P,Blanco FJ,Bravo J,Montoya G,Paques F,Duchateau P.A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences.Nucleic Acids Res,2006,34(22):e149.
    [13]Silva G,Poirot L,Galetto R,Smith J,Montoya G,Duchateau P,Paques F.Meganucleases and other tools for targeted genome engineering:Perspectives and challenges for gene therapy.Curr Gene Ther,2011,11(1):11-27.
    [14]Wang L,Smith J,Breton C,Clark P,Zhang J,Ying L,Che Y,Lape J,Bell P,Calcedo R,Buza EL,Saveliev A,Bartsevich VV,He Z,White J,Li M,Jantz D,Wilson JM.Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol.Nat Biotechnol,2018,36(8):717-725.
    [15]Mani M,Kandavelou K,Dy FJ,Durai S,Chandrasegaran S.Design,engineering,and characterization of zinc finger nucleases.Biochem Biophys Res Commun,2005,335(2):447-457.
    [16]Carroll D.Genome engineering with zinc-finger nucleases.Genetics,2011,188(4):773-782.
    [17]Kim YG,Cha J,Chandrasegaran S.Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain.Proc Natl Acad Sci USA,1996,93(3):1156-1160.
    [18]Ramirez CL,Foley JE,Wright DA,Müller-Lerch F,Rahman SH,Cornu TI,Winfrey RJ,Sander JD,Fu F,Townsend JA,Cathomen T,Voytas DF,Joung JK.Unexpected failure rates for modular assembly of engineered zinc fingers.Nat Methods,2008,5(5):374-375.
    [19]Lam KN,van Bakel H,Cote AG,van der Ven A,Hughes TR.Sequence specificity is obtained from the majority of modular C2H2 Zinc-finger arrays.Nucleic Acids Res,2011,39(11):4680-4690.
    [20]Ul Ain Q,Chung JY,Kim YH.Current and future delivery systems for engineered nucleases:ZFN,TALENand RGEN.J Control Release,2014,205:120-127.
    [21]Bonas U,Stall RE,Staskawicz B.Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv.vesicatoria.Mol Gen Genet,1989,218(1):127-136.
    [22]Kay S,Hahn S,Marois E,Hause G,Bonas U.Abacterial effector acts as a plant transcription factor and induces a cell size regulator.Science,2007,318(5850):648-651.
    [23]Sugio A,Yang B,Zhu T,White FF.Two type III effector genes of Xanthomonas oryzae pv.Oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1during bacterial blight of rice.Proc Natl Acad Sci USA,2007,104(25):10720-10725.
    [24]Boch J,Scholze H,Schornack S,Landgraf A,Hahn S,Kay S,Lahaye T,Nickstadt A,Bonas U.Breaking the code of DNA binding specificity of TAL-type IIIeffectors.Science,2009,326(5959):1509-1512.
    [25]Moscou MJ,Bogdanove AJ.A simple cipher governs DNA recognition by TAL effectors.Science,2009,326(5959):1501.
    [26]Bedell VM,Wang Y,Campbell JM,Poshusta TL,Starker CG,Krug RG 2nd,Tan W,Penheiter SG,Ma AC,Leung AY,Fahrenkrug SC,Carlson DF,Voytas DF,Clark KJ,Essner JJ,Ekker SC.In vivo genome editing using a high-efficiency TALEN system.Nature,2012,491(7422):114-118.
    [27]Tan WS,Carlson DF,Walton MW,Fahrenkrug SC,Hackett PB.Precision editing of large animal genomes.Adv Genet,2012,80:37-97.
    [28]Joung JK,Sander JD.TALENs:a widely applicable technology for targeted genome editing.Nat Rev Mol Cell Biol,2013,14(1):49-55.
    [29]Lee HB,Sundberg BN,Sigafoos AN,Clark KJ.Genome engineering with TALE and CRISPR systems in neuroscience.Front Genet,2016,7:47.
    [30]Qiu Z,Liu M,Chen Z,Shao Y,Pan H,Wei G,Yu C,Zhang L,Li X,Wang P,Fan HY,Du B,Liu B,Liu M,Li D.High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases.Nucleic Acids Res,2013,41(11):e120.
    [31]Tong C,Huang G,Ashton C,Wu H,Yan H,Ying QL.Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs.J Genet Genomics,2012,39(6):275-280.
    [32]Liu J,Li C,Yu Z,Huang P,Wu H,Wei C,Zhu N,Shen Y,Chen Y,Zhang B,Deng WM,Jiao R.Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy.J Genet Genomics,2012,39(5):209-215.
    [33]Christian M,Qi Y,Zhang Y,Voytas DF.Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases.G3(Bethesda),2013,3(10):1697-1705.
    [34]Ishino Y,Shinagawa H,Makino K,Amemura M,Nakata A.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product.J Bacteriol,1987,169(12):5429-5433.
    [35]Jansen R,Embden JD,Gaastra W,Schouls LM.Identification of genes that are associated with DNArepeats in prokaryotes.Mol Microbiol,2002,43(6):1565-1575.
    [36]Gasiunas G,Barrangou R,Horvath P,Siksnys V.Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.Proc Natl Acad Sci USA,2012,109(39):E2579-2586.
    [37]Fonfara I,Le Rhun A,Chylinski K,Makarova KS,Lécrivain AL,Bzdrenga J,Koonin EV,Charpentier E.Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type IICRISPR-Cas systems.Nucleic Acids Res,2014,42(4):2577-2590.
    [38]Hsu PD,Scott DA,Weinstein JA,Ran FA,Konermann S,Agarwala V,Li Y,Fine EJ,Wu X,Shalem O,Cradick TJ,Marraffini LA,Bao G,Zhang F.DNA targeting specificity of RNA-guided Cas9 nucleases.Nat Biotechnol,2013,31(9):827-832.
    [39]Pattanayak V,Lin S,Guilinger JP,Ma E,Doudna JA,Liu DR.High-throughput profiling of off-target DNAcleavage reveals RNA programmed Cas9 nuclease specificity.Nat Biotechnol,2013,31(9):839-843.
    [40]Fu Y,Foden JA,Khayter C,Maeder ML,Reyon D,Joung JK,Sander JD.High frequency off target mutagenesis induced by CRISPR-Cas nucleases in human cells.Nat Biotechnol,2013,31(9):822-826.
    [41]Ran FA,Cong L,Yan WX,Scott DA,Gootenberg JS,Kriz AJ,Zetsche B,Shalem O,Wu X,Makarova KS,Koonin EV,Sharp PA,Zhang F.In vivo genome editing using Staphylococcus aureus Cas9.Nature,2015,520(7546):186-191.
    [42]Zetsche B,Gootenberg JS,Abudayyeh OO,Slaymaker IM,Makarova KS,Essletzbichler P,Volz SE,Joung J,van der Oost J,Regev A,Koonin EV,Zhang F.Cpf1 is a single RNA-guided endonuclease of a class 2CRISPR-Cas system.Cell,2015,163(3):759-771.
    [43]Hu JH,Miller SM,Geurts MH,Tang W,Chen L,Sun N,Zeina CM,Gao X,Rees HA,Lin Z,Liu DR.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.Nature,2018,556(7699):57-63.
    [44]Nishimasu H,Shi X,Ishiguro S,Gao L,Hirano S,Okazaki S,Noda T,Abudayyeh OO,Gootenberg JS,Mori H,Oura S,Holmes B,Tanaka M,Seki M,Hirano H,Aburatani H,Ishitani R,Ikawa M,Yachie N,Zhang F,Nureki O.Engineered CRISPR-Cas9 nuclease with expanded targeting space.Science,2018,361(6408):1259-1262.
    [45]Singh D,Wang Y,Mallon J,Yang O,Fei J,Poddar A,Ceylan D,Bailey S,Ha T.Mechanisms of improved specificity of engineered Cas9s revealed by singlemolecule FRET analysis.Nat Struct Mol Biol,2018,25(4):347-354.
    [46]Chen JS,Dagdas YS,Kleinstiver BP,Welch MM,Sousa AA,Harrington LB,Sternberg SH,Joung JK,Yildiz A,Doudna JA.Enhanced proofreading governs CRISPR-Cas9 targeting accuracy.Nature,2017,550(7676):407-410.
    [47]Ran FA,Hsu PD,Lin CY,Gootenberg JS,Konermann S,Trevino AE,Scott DA,Inoue A,Matoba S,Zhang Y,Zhang F.Double nicking by RNA-guided CRISPR Cas9for enhanced genome editing specificity.Cell,2013,154(6):1380-1389.
    [48]Komor AC,Kim YB,Packer MS,Zuris JA,Liu DR.Programmable editing of a target base in genomic DNAwithout double-stranded DNA cleavage.Nature,2016,533(7603):420-424.
    [49]Nishida K,Arazoe T,Yachie N,Banno S,Kakimoto M,Tabata M,Mochizuki M,Miyabe A,Araki M,Hara KY,Shimatani Z,Kondo A.Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems.Science,2016,353(6305):aaf8729.
    [50]Ma Y,Zhang J,Yin W,Zhang Z,Song Y,Chang X.Targeted AID-mediated mutagenesis(TAM)enables efficient genomic diversification in mammalian cells.Nat Methods,2016,13(12):1029-1035.
    [51]Gaudelli NM,Komor AC,Rees HA,Packer MS,Badran AH,Bryson DI,Liu DR.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage.Nature,2017,551(7681):464-471.
    [52]Wei Y,Zhang XH,Li DL.The”new favorite”of gene editing technology-single base editors.Hereditas(Beijing),2017,39(12):1115-1121.魏瑜,张晓辉,李大力.基因编辑之“新宠”-单碱基基因组编辑系统.遗传,2017,39(12):1115-1121.
    [53]Gilbert LA,Larson MH,Morsut L,Liu Z,Brar GA,Torres SE,Stern-Ginossar N,Brandman O,Whitehead EH,Doudna JA,Lim WA,Weissman JS,Qi LS.CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.Cell,2013,154(2):442-451.
    [54]Maeder ML,Linder SJ,Cascio VM,Fu Y,Ho QH,Joung JK.CRISPR RNA-guided activation of endogenous human genes.Nat Methods,2013,10(10):977-979.
    [55]Perez-Pinera P,Kocak DD,Vockley CM,Adler AF,Kabadi AM,Polstein LR,Thakore PI,Glass KA,Ousterout DG,Leong KW,Guilak F,Crawford GE,Reddy TE,Gersbach CA.RNA-guided gene activation by CRISPR-Cas9-based transcription factors.Nat Methods,2013,10(10):973-976.
    [56]Chavez A,Scheiman J,Vora S,Pruitt BW,Tuttle M,P RIyer E,Lin S,Kiani S,Guzman CD,Wiegand DJ,Ter-Ovanesyan D,Braff JL,Davidsohn N,Housden BE,Perrimon N,Weiss R,Aach J,Collins JJ,Church GM.Highly efficient Cas9-mediated transcriptional programming.Nat Methods,2015,12(4):326-328.
    [57]Li Z,Zhang D,Xiong X,Yan B,Xie W,Sheen J,Li JF.A potent Cas9-derived gene activator for plant and mammalian cells.Nat Plants,2017,3(12):930-936.
    [58]Liu XS,Wu H,Ji X,Stelzer Y,Wu X,Czauderna S,Shu J,Dadon D,Young RA,Jaenisch R.Editing DNAmethylation in the mammalian genome.Cell,2016,167(1):233-247.
    [59]Liu P,Chen M,Liu Y,Qi LS,Ding S.CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2locus enables reprogramming to pluripotency.Cell Stem Cell,2018,22(2):252-261.
    [60]Cano-Rodriguez D,Gjaltema RA,Jilderda LJ,Jellema P,Dokter-Fokkens J,Ruiters MH,Rots MG.Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner.Nat Commun,2016,7:12284.
    [61]Kearns NA,Pham H,Tabak B,Genga RM,Silverstein NJ,Garber M,Maehr R.Functional annotation of native enhancers with a Cas9-histone demethylase fusion.Nat Methods,2015,12(5):401-403.
    [62]Hilton IB,D'Ippolito AM,Vockley CM,Thakore PI,Crawford GE,Reddy TE,Gersbach CA.Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers.Nat Biotechnol,2015,33(5):510-517.
    [63]Kwon DY,Zhao YT,Lamonica JM,Zhou Z.Locus-specific histone deacetylation using a synthetic CRISPRCas9-based HDAC.Nat Commun,2017,8:15315.
    [64]Mendenhall EM,Williamson KE,Reyon D,Zou JY,Ram O,Joung JK,Bernstein BE.Locus-specific editing of histone modifications at endogenous enhancers.Nat Biotechnol,2013,31(12):1133-1136.
    [65]Naldini L.Gene therapy returns to centre stage.Nature,2015,526(7573):351-360.
    [66]Sinn PL,Sauter SL,McCray PB.Gene therapy progress and prospects:development of improved lentiviral and retroviral vectors--design,biosafety,and production.Gene Ther,2005,12(14):1089-1098.
    [67]Cavazzana-Calvo M,Payen E,Negre O,Wang G,Hehir K,Fusil F,Down J,Denaro M,Brady T,Westerman K,Cavallesco R,Gillet-Legrand B,Caccavelli L,Sgarra R,Maouche-Chrétien L,Bernaudin F,Girot R,Dorazio R,Mulder GJ,Polack A,Bank A,Soulier J,Larghero J,Kabbara N,Dalle B,Gourmel B,Socie G,Chrétien S,Cartier N,Aubourg P,Fischer A,Cornetta K,Galacteros F,Beuzard Y,Gluckman E,Bushman F,Hacein-BeyAbina S,Leboulch P.Transfusion independence and HMGA2 activation after gene therapy of humanβ-thalassaemia.Nature,2010,467(7313):318-322.
    [68]Wickham TJ.Targeting adenovirus.Gene Ther,2000,7(2):110-114.
    [69]Kotterman MA,Schaffer DV.Engineering adenoassociated viruses for clinical gene therapy.Nat Rev Genet,2014,15(7):445-451.
    [70]Jin S,Ye K.Nanoparticle-Mediated drug delivery and gene therapy.Biotechnol Prog,2007,23(1):32-41.
    [71]Ding Q,Strong A,Patel KM,Ng SL,Gosis BS,Regan SN,Cowan CA,Rader DJ,Musunuru K.Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing.Circ Res,2014,115(5):488-492.
    [72]Pankowicz FP,Barzi M,Legras X,Hubert L,Mi T,Tomolonis JA,Ravishankar M,Sun Q,Yang D,Borowiak M,Sumazin P,Elsea SH,Bissig-Choisat B,Bissig KD.Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia.Nat Commun,2016,7:12642.
    [73]Forget BG.Molecular basis of hereditary persistence of fetal hemoglobin.Ann Ny Acad Sci,1998,850:38-44.
    [74]Thein SL.Molecular basis ofβthalassemia and potential therapeutic targets.Blood Cell Mol Dis,2017,70:54-65.
    [75]Tsang JC,Yu Y,Burke S,Buettner F,Wang C,Kolodziejczyk AA,Teichmann SA,Lu L,Liu P.Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells.Genome Biol,2015,16:178.
    [76]Bauer DE,Kamran SC,Lessard S,Xu J,Fujiwara Y,Lin C,Shao Z,Canver MC,Smith EC,Pinello L,Sabo PJ,Vierstra J,Voit RA,Yuan GC,Porteus MH,Stamatoyannopoulos JA,Lettre G,Orkin SH.An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level.Science,2013,342(6155):253-257.
    [77]Canver MC,Smith EC,Sher F,Pinello L,Sanjana NE,Shalem O,Chen DD,Schupp PG,Vinjamur DS,Garcia SP,Luc S,Kurita R,Nakamura Y,Fujiwara Y,Maeda T,Yuan GC,Zhang F,Orkin SH,Bauer DE.BCL11Aenhancer dissection by Cas9-mediated in situ saturating mutagenesis.Nature,2015,527(7577):192-197.
    [78]Vierstra J,Reik A,Chang KH,Stehling-Sun S,Zhou Y,Hinkley SJ,Paschon DE,Zhang L,Psatha N,Bendana YR,O'Neil CM,Song AH,Mich AK,Liu PQ,Lee G,Bauer DE,Holmes MC,Orkin SH,Papayannopoulou T,Stamatoyannopoulos G,Rebar EJ,Gregory PD,Urnov FD,Stamatoyannopoulos JA.Functional footprinting of regulatory DNA.Nat Methods,2015,12(10):927-930.
    [79]Martyn GE,Wienert B,Yang L,Shah M,Norton LJ,Burdach J,Kurita R,Nakamura Y,Pearson RCM,Funnell APW,Quinlan KGR,Crossley M.Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding.Nat Genet,2018,50(4):498-503.
    [80]Ousterout DG,Kabadi AM,Thakore PI,Perez-Pinera P,Brown MT,Majoros WH,Reddy TE,Gersbach CA.Correction of dystrophin expression in cells from duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases.Mol Ther,2015,23(3):523-532.
    [81]Ousterout DG,Kabadi AM,Thakore PI,Majoros WH,Reddy TE,Gersbach CA.Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy.Nat Commun,2015,6:6244.
    [82]Li HL,Fujimoto N,Sasakawa N,Shirai S,Ohkame T,Sakuma T,Tanaka M,Amano N,Watanabe A,Sakurai H,Yamamoto T,Yamanaka S,Hotta A.Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.Stem Cell Reports,2015,4(1):143-154.
    [83]Shin JW,Kim KH,Chao MJ,Atwal RS,Gillis T,MacDonald ME,Gusella JF,Lee JM.Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9.Hum Mol Genet,2016,25(20):4566-4576.
    [84]Gao X,Tao Y,Lamas V,Huang M,Yeh WH,Pan B,Hu YJ,Hu JH,Thompson DB,Shu Y,Li Y,Wang H,Yang S,Xu Q,Polley DB,Liberman MC,Kong WJ,Holt JR,Chen ZY,Liu DR.Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents.Nature,2018,553(7687):217-221.
    [85]Yin H,Xue W,Chen S,Bogorad RL,Benedetti E,Grompe M,Koteliansky V,Sharp PA,Jacks T,Anderson DG.Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype.Nat Biotechnol,2014,32(6):551-553.
    [86]Shao Y,Wang L,Guo N,Wang S,Yang L,Li Y,Wang M,Yin S,Han H,Zeng L,Zhang L,Hui L,Ding Q,Zhang J,Geng H,Liu M,Li D.Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats.J Biol Chem,2018,293(18):6883-6892.
    [87]Guan Y,Ma Y,Li Q,Sun Z,Ma L,Wu L,Wang L,Zeng L,Shao Y,Chen Y,Ma N,Lu W,Hu K,Han H,Yu Y,Huang Y,Liu M,Li D.CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse.EMBO Mol Med,2016,8(5):477-488.
    [88]Yang Y,Wang L,Bell P,McMenamin D,He Z,White J,Yu H,Xu C,Morizono H,Musunuru K,Batshaw ML,Wilson JM.A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice.Nat Biotechnol,2016,34(3):334-338.
    [89]Li H,Haurigot V,Doyon Y,Li T,Wong SY,Bhagwat AS,Malani N,Anguela XM,Sharma R,Ivanciu L,Murphy SL,Finn JD,Khazi FR,Zhou S,Paschon DE,Rebar EJ,Bushman FD,Gregory PD,Holmes MC,High KA.In vivo genome editing restores haemostasis in a mouse model of haemophilia.Nature,2011,475(7355):217-221.
    [90]Cong L,Ran FA,Cox D,Lin S,Barretto R,Habib N,Hsu PD,Wu X,Jiang W,Marraffini LA,Zhang F.Multiplex genome engineering using CRISPR/Cas systems.Science,2013,339(6121):819-823.
    [91]Suzuki K,Tsunekawa Y,Hernandez-Benitez R,Wu J,Zhu J,Kim EJ,Hatanaka F,Yamamoto M,Araoka T,Li Z,Kurita M,Hishida T,Li M,Aizawa E,Guo S,Chen S,Goebl A,Soligalla RD,Qu J,Jiang T,Fu X,Jafari M,Esteban CR,Berggren WT,Lajara J,Nu?ez-Delicado E,Guillen P,Campistol JM,Matsuzaki F,Liu GH,Magistretti P,Zhang K,Callaway EM,Zhang K,Belmonte JC.In vivo genome editing via CRISPR/Cas9mediated homology-independent targeted integration.Nature,2016,540(7631):144-149.
    [92]Yao X,Wang X,Hu X,Liu Z,Liu J,Zhou H,Shen X,Wei Y,Huang Z,Ying W,Wang Y,Nie YH,Zhang CC,Li S,Cheng L,Wang Q,Wu Y,Huang P,Sun Q,Shi L,Yang H.Homology-mediated end joining-based targeted integration using CRISPR/Cas9.Cell Res,2017,27(6):801-814.
    [93]Yao X,Wang X,Liu J,Shi L,Huang P,Yang H.CRISPR/Cas9-mediated targeted integration in vivo using a homology-mediated end joining-based strategy.J Vis Exp,2018(133).
    [94]Komor AC,Kim YB,Packer MS,Zuris JA,Liu DR.Programmable editing of a target base in genomic DNAwithout double-stranded DNA cleavage.Nature,2016,533(7603):420-424.
    [95]Billon P,Bryant EE,Joseph SA,Nambiar TS,Hayward SB,Rothstein R,Ciccia A.CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons.Mol Cell,2017,67(6):1068-1079.e4.
    [96]Rossidis AC,Stratigis JD,Chadwick AC,Hartman HA,Ahn NJ,Li H,Singh K,Coons BE,Li L,Lv W,Zoltick PW,Alapati D,Zacharias W,Jain R,Morrisey EE,Musunuru K,Peranteau WH.In utero CRISPR-mediated therapeutic editing of metabolic genes.Nat Med,2018,24(10):1513-1518.
    [97]Ryu SM,Koo T,Kim K,Lim K,Baek G,Kim ST,Kim HS,Kim DE,Lee H,Chung E,Kim JS.Adenine base editing in mouse embryos and an adult mouse model of duchenne muscular dystrophy.Nat Biotechnol,2018,36(6):536-539.
    [98]Villiger L,Grisch-Chan HM,Lindsay H,Ringnalda F,Pogliano CB,Allegri G,Fingerhut R,H?berle J,Matos J,Robinson MD,Th?ny B,Schwank G.Treatment of a metabolic liver disease by in vivo genome base editing in adult mice.Nat Med,2018,24(10):1519-1525.
    [99]Liao HK,Hatanaka F,Araoka T,Reddy P,Wu MZ,Sui Y,Yamauchi T,Sakurai M,O'Keefe DD,Nú?ez-Delicado E,Guillen P,Campistol JM,Wu CJ,Lu LF,Esteban CR,Izpisua Belmonte JC.In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation.Cell,2017,171(7):1495-1507.e15.
    [100]Zhou H,Liu J,Zhou C,Gao N,Rao Z,Li H,Hu X,Li C,Yao X,Shen X,Sun Y,Wei Y,Liu F,Ying W,Zhang J,Tang C,Zhang X,Xu H,Shi L,Cheng L,Huang P,Yang H.In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice.Nat Neurosci,2018,21(3):440-446.
    [101]Matharu N,Rattanasopha S,Tamura S,Maliskova L,Wang Y,Bernard A,Hardin A,Eckalbar WL,Vaisse C,Ahituv N.CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency.Science,2018,363(6424):231-243.
    [102]Xu Y,Wu F,Tan L,Kong L,Xiong L,Deng J,Barbera AJ,Zheng L,Zhang H,Huang S,Min J,Nicholson T,Chen T,Xu G,Shi Y,Zhang K,Shi YG.Genome-wide regulation of 5hmC,5mC,and gene expression by Tet1hydroxylase in mouse embryonic stem cells.Mol Cell,2011,42(4):451-464.
    [103]Liu XS,Wu H,Krzisch M,Wu X,Graef J,Muffat J,Hnisz D,Li CH,Yuan B,Xu C,Li Y,Vershkov D,Cacace A,Young RA,Jaenisch R.Rescue of fragile Xsyndrome neurons by DNA methylation editing of the FMR1 gene.Cell,2018,172(5):979-992.e6.
    [104]Haapaniemi E,Botla S,Persson J,Schmierer B,Taipale J.CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.Nat Med,2018,24(7):927-930.
    [105]Ihry RJ,Worringer KA,Salick MR,Frias E,Ho D,Theriault K,Kommineni S,Chen J,Sondey M,Ye C,Randhawa R,Kulkarni T,Yang Z,McAllister G,Russ C,Reece-Hoyes J,Forrester W,Hoffman GR,Dolmetsch R,Kaykas A.P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.Nat Med,2018,24(7):939-946.
    [106]Zuo E,Sun Y,Wei W,Yuan T,Ying W,Sun H,Yuan L,Steinmetz LM,Li Y,Yang H.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos.Science,2019,364(6437):289-292.
    [107]Jin S,Zong Y,Gao Q,Zhu Z,Wang Y,Qin P,Liang C,Wang D,Qiu JL,Zhang F,Gao C.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice.Science,2019,364(6437):292-295.
    [108]Chu JY.Ethical issues that cannot be ignored in the development of genetics research.Hereditas(Beijing),2019,41(5):447-450.褚嘉祐.遗传学研究领域发展过程中不可忽视的伦理学问题.遗传,2019,41(5):447-450.
    [109]David C.Japan set to allow gene editing in human embryos.Nature,news,2018-10-03.
    [110]Woods NB,Bottero V,Schmidt M,von Kalle C,Verma IM.Gene therapy:therapeutic gene causing lymphoma.Nature,2006,440(7088):1123.
    [111]Mavilio F,Ferrari G.Genetic modification of somatic stem cells.EMBO Rep,2008,9(1S):S64-S69.
    [112]LappéM.Ethical issues in manipulating the human germ line.J Med Philos,1991,16(6):621-639.
    [113]Jocelyn K.A human has been injected with gene-editing tools to cure his disabling disease.Here’s what you need to know.Science,news,2017-11-15.
    [114]Boissel S,Jarjour J,Astrakhan A,Adey A,Gouble A,Duchateau P,Shendure J,Stoddard BL,Certo MT,Baker D,Scharenberg AM.MegaTALs:a rare-cleaving nuclease architecture for therapeutic genome engineering.Nucleic Acids Res,2013,42(4):2591-2601.
    [115]Beane JD,Lee G,Zheng Z,Mendel M,Abate-Daga D,Bharathan M,Black M,Gandhi N,Yu Z,Chandran S,Giedlin M,Ando D,Miller J,Paschon D,Guschin D,Rebar EJ,Reik A,Holmes MC,Gregory PD,Restifo NP,Rosenberg SA,Morgan RA,Feldman SA.Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma.Mol Ther,2015,23(8):1380-1390.
    [116]Reik A,Holmes MC,Zhou Y,Mendel M,Liu PQ,Lee G,Paschon D,Rebar E,Ando D,DiGiusto D,Gregory PD,Jensen MC.Targeted killing of glioblastoma multiforme in vivo by IL-13 zetakine redirected CTLs made glucocorticoid resistant with zinc finger nucleases.Blood,2007,110:2597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700