枣树2-半胱氨酸氧化还原酶基因Zj2-CP在干旱和盐胁迫下的功能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Functional analysis of 2-Cys peroxiredoxins gene(Zj2-CP) in jujube under drought and salt stresses
  • 作者:聂园军 ; 李倩 ; 肖蓉 ; 郭慧娜 ; 张春芬 ; 邓舒 ; 侯丽媛 ; 董艳辉 ; 孟玉平 ; 曹秋芬
  • 英文作者:NIE Yuanjun;LI Qian;XIAO Rong;GUO Huina;ZHANG Chunfen;DENG Shu;HOU Liyuan;DONG Yanhui;MENG Yuping;CAO Qiufen;Institute of Agricultural Resources and Economy, Shanxi Academy of Agricultural Sciences;Institute of Wheat Research, Shanxi Academy of Agricultural Sciences;Institute of Pomology, Shanxi Academy of Agricultural Sciences;Biotechnology Research Center, Shanxi Academy of Agricultural Sciences;
  • 关键词:枣树 ; Zj2-CP ; 胁迫 ; 功能分析
  • 英文关键词:Ziziphus jujube;;Zj2-CP gene;;Stress;;Functional analysis
  • 中文刊名:GSKK
  • 英文刊名:Journal of Fruit Science
  • 机构:山西省农业科学院农业资源与经济研究所;山西省农业科学院小麦研究所;山西省农业科学院果树研究所;山西省农业科学院生物技术研究中心;
  • 出版日期:2019-04-12 09:38
  • 出版单位:果树学报
  • 年:2019
  • 期:v.36
  • 基金:国家科技基础性工作专项(2012 FY110100-5);; 山西省农业科学院攻关项目(YGG1432)
  • 语种:中文;
  • 页:GSKK201906003
  • 页数:8
  • CN:06
  • ISSN:41-1308/S
  • 分类号:23-30
摘要
【目的】研究枣树2-半胱氨酸氧化还原酶基因(2-Cys peroxiredoxins, Zj2-CP)的功能,为其在枣树抗逆基因工程改良中的利用奠定基础。【方法】以‘辣椒枣’(Ziziphus jujuba‘Lajiaozao’)组培苗为研究对象,通过实时荧光定量PCR技术分析目的基因在盐胁迫及PEG胁迫条件下的表达模式,利用农杆菌介导法将本实验室已构建的植物表达载体PEZR(K)-Zj2-CP-LNY转入拟南芥,激光共聚焦显微镜进行目的基因的亚细胞定位,同时对转基因植株进行高盐和干旱胁迫处理,验证其抗逆功能。【结果】实时荧光定量PCR分析表明‘,辣椒枣’组培苗中,Zj2-CP能够被不同浓度的PEG和盐胁迫诱导表达,暗示该基因可能对枣树抗旱性和耐盐性具有重要的作用。转Zj2-CP基因的拟南芥转化株系的茎和叶表皮细胞的细胞膜和细胞质以及根的细胞膜中均检测到Zj2-CP存在。在盐胁迫处理下,转Zj2-CP基因的拟南芥的幼苗存活率显著低于野生型;在干旱胁迫处理下,转Zj2-CP基因植株主根的长度显著低于野生型。【结论】与野生型拟南芥相比,过表达Zj2-CP基因的拟南芥增加了对干旱和盐胁迫的敏感性,我们推测Zj2-CP参与植物干旱和盐胁迫响应。
        【Objective】Extreme environmental stresses can induce reactive oxygen species(ROS) that generate oxidative stress at the cellular level in plants. Plants have developed diverse defensive mechanisms for scavenging oxidative stress. 2-Cys peroxiredoxins(2-CP) protein has been known as a member of peroxiredoxins(Prxs) which can remove ROS and protect the photosynthetic membrane from oxidative damage in plants, but their functions under abiotic stress are not clear. As a foundation for further studying on the application of fruit stress tolerance genetic engineering, the function of Zj2-CP gene encoding a 2-Cys peroxiredoxins from Ziziphus jujuba Mill. was analyzed under drought and salt stresses.【Methods】To test the Zj2-CP responses to abiotic stress, seedlings of jujube were treated under different PEG(0.5 MPa, 0.8 MPa and 1.2 MPa) and salt(50 mmol · L-1, 100 mmol · L-1 and 300 mmol · L-1)stresses. The leaves were sampled for expression analysis at different times(15 min, 1 h, 3 h and 6 h).The total leaf RNA was extracted by CTAB(Hexadecyl trimethyl ammonium Bromide). The primers were designed according to the gene Zj2-CP sequence. The expressions of Zj2-CP under PEG and salt stresses were tested by qRT-PCR(Quantitative real-time quantitative PCR). To detect subcellular localization of Zj2-CP protei. The fusion vector named PEZR(K)-Zj2-CP-LNY with a 35 s promoter and YFP tag constructed in our previous studies was transformed into Agrobacterium tumefaciens strain LBA4404, which then was transformed into Arabidopsis to obtain stable transgenic lines of Zj2-CP using agrobacterium-mediated method. YFP fluorescence was recorded under a confocal laser scanning microscope(Leica TCS SP5). Three stable overexpression transgenic lines were used to verify the function of Zj2-CP under stress tolerance, and the survival rate and the length of primary root with 9-dayseedlings of transgenic and wild Arabidopsis plants were analyzed under NaCl(150 mmol·L-1) and mannitol(100 mmol · L-1 and 300 mmol · L-1) stresses.【Results】qRT-PCR analysis showed that under lower concentration of PEG stress(0.5 MPa and 0.8 MPa), the expression level of the target gene increased with time. On the contrary, under higher concentration, the relative expression of the gene was the strongest and reached the maximum at 15 min, and then decreased with time because of cell membrane damage under the higher concentration stress. The relative expression of the target gene in jujube seedlings showed a similar trend,first reaching the maximum at 1 h and then decreasing with time. Moreover,with the increase of salt concentration, the expression of Zj2-CP gene in jujube gradually increased. We examined the subcellular localization of Zj2-CP in stable transgenic Arabidopsis plants under a fluorescence confocal microscope. Fluorescence was mainly detected in the cell membrane and cytoplasm in leaves and stems, but was only found in the cell membrane in root. Particularly, the signal was detected in the cell membrane and cytoplasm of stomata guard cells. The stress tolerance showed that the seedlings grew well in the MS culture medium, but under the 150 mmol · L-1 salt stress the survival rate of transgenic plants was 8%, whereas the rate of wild type was 90%. The length of primary root of transgenic plants was 1.08 cm and 0.42 cm under 100 mmol · L-1 and 300 mmol · L-1 PEG stress, respectively,while that of wild type reached 1.48 cm and 0.92 cm. Stress tolerance pointed out that the transgenic plants showed lower survival rate than the control, and the length of primary root of transgenic plants under drought stress was significantly shorter than the control. The results also indicated that the phenotype of three stable transgenic lines was different, but only one line was significantly different, and the reason may be that the signal was detected in one stable transgenic line, but the exogenous gene was silenced in other two transgenic lines.【Conclusion】The gene of Zj2-CP was located in cell membrane and cytoplasm, and the expression could be induced by PEG or salt stresses, which indicated that Zj2-CP was involved in different signal pathways responding to abiotic stress. This study exhibited Zj2-CP was likely related to drought and salt resistances, and Arabidopsis thaliana overexpressing of Zj2-CP increased the sensitivity to drought and salt stress. Overall, the gene of Zj2-CP maybe plays a negative regulatory role in resisting drought and salt stress.
引文
[1]南芝润,范月仙.植物过氧化氢酶的研究进展[J].安徽农学通报,2008,14(5):27-29.NAN Zhirun,FAN Yuexian.Advance of researches on catalase in plants[J].Anhui Agricultural Science Bulletin.2008,14(5):27-29.
    [2]杜秀敏,殷文璇,赵彦修,张慧.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.DU Xiumin,YIN Wenxuan,ZHAO Yanxiu,ZHANG Hui.The production and scavenging of reactive oxygen species in plants[J].Chinese Journal of Biotechnology,2007,17(2):121-125.
    [3]BONOS S A,MURPHY J A.Growth responses and performance of Kentucky bluegrass under summer stress[J].Corp Science,1999,39(3):770-774.
    [4]DIETZ K J,JACOB S,OELZE M L,LAXA M,TOGNETTI V,BAIER M,FINKEMEIER I.The function of peroxiredoxins in plant organelle redox metabolism[J].Journal of Experimental Botany,2006,57(8):1697-1709.
    [5]KINNULA V L,LEHTONEN S,SORMUNEN R,KAARTEEN-AHO R,KANG S W,RHEE S G,SOINI Y.Overexpression of peroxiredoxinsⅠ,Ⅱ,Ⅲ,ⅤandⅥin malignant mesothelioma[J].Journal of Pathology,2002,196(3):316-323.
    [6]SAKAMOTO A,TSUKAMOTO S,YAMAMOTO H,UEDA-HASHIMOTO M,TAKAHASHI M,SUZUKI H,MORIKAWAH.Functional complementation in yeast reveals a protective role of chloroplast 2-Cys peroxiredoxin against reactive nitrogen species[J].The Plant Journal,2003,33(5):841-851.
    [7]CAPORALETTI D,D’ALESSIO A C,RODRIGUEZ R J,SENN A M,DUEK P D,WOLOSIUK R A.Non-reductive modulation of chloroplast fructose-1,6-bisphosphatase by 2-Cys peroxiredoxin[J].Biochemical and Biophysical Research Communications,2007,355(3):722-727.
    [8]WOOD Z A,SHRODER E,HARRIS J R,POOLE L B.Structure,mechanism and regulation of peroxiredoxins[J].Trends in Biochemical Sciences,2003,28(1):32-40.
    [9]马全林,王继和,张盹明,吴春荣.枣树抗旱机制的探讨[J].甘肃林业科技,2000,25(1):20-23.MA Quanlin,WANG Jihe,ZHANG Chunming,WU Chunrong.Investigate on drought resistance mechanism of Ziziphus jujuba[J].Journal of Gansu Forestry Sciences and Technology,2000,25(1):20-23.
    [10]段元杰,刘海刚,孟富宣,杨玉皎,周军.枣树花药组织培养研究进展[J].江西农业学报,2016,11(28):47-50.DUAN Yuanjie,LIU Haigang,MENG Fuxuan,YANG Yujiao,ZHOU Jun.Research progress in tissue culture of chinese jujube anther[J].Acta Agriculturae Jiangxi,2016,11(28):47-50.
    [11]梁芊,孙慧英,李一路,王燕平,薛晓芳,高鹏.我国枣树栽培现状及建议[J].山西农业科学,2017,4(45):636-638.LIANG Qian,SUN Huiying,LI Yilu,WANG Yanping,XUEXiaofang,GAO Peng.Present situation and suggestion of jujube cultivation in china[J].Journal of Shanxi Agricultural Sciences,2017,4(45):636-638.
    [12]孟玉平,曹秋芬,孙海峰.枣树内参基因ZjH3的克隆与筛选[J].生物技术通报,2010(11):101-107.MENG Yuping,CAO Qiufen,SUN Haifeng.Cloning and selection of housekeeping gene ZjH3 for Ziziphus jujuba[J].Biotechnology Bulletin,2010(11):101-107.
    [13]SCHMITTGEN T D,LIVAK K J.Analyzing real-time PCR data by the comparative C(T)method[J].Nature Protocols,2008,3(6):1101-1108.
    [14]罗慧珍,邓舒,肖蓉,张春芬,任莹,郭慧娜,孟玉平,曹秋芬.枣树2-半胱氨酸氧化还原酶基因Zj2-CP的生物信息学分析及表达载体的构建[J].分子植物育种,2015,13(7):1545-1552.LUO Huizhen,DENG Shu,XIAO Rong,ZHANG Chunfen,REN Ying,GUO Huina,MENG Yuping,CAO Qiufen.Bioinformatics Analysis and construction of the plant expression vector of Ziziphus jujuba 2-Cys peroxiredoxin(Zj2-CP)[J].Molecular Plant Breeding,2015,13(7):1545-1552.
    [15]肖蓉,罗慧珍,张小娟,邓舒,张春芬,任莹,孟玉平,曹秋芬,聂园军.干旱和盐胁迫条件下枣树谷胱甘肽过氧化物酶基因(ZjGPX)的差异表达及功能分析[J].中国农业科学,2015,48(14):2806-2817.XIAO Rong,LUO Huizhen,ZHANG Xiaojuan,DENG Shu,ZHANG Chunfen,REN Ying,MENG Yuping,CAO Qiufen,NIE Yuanjun.Differential expression and functional analysis of glutathione peroxidase gene from jujube(ZjGPX)under drought and salt stresses[J].Journal of Integrative Agricultture,2015,48(14):2806-2817.
    [16]REDDY M S,DINKINS R D,COLLINS G B.Gene silencing in transgenic soybean plants transformed via particle bombardment[J].Plant Cell Report,2003,21(7):676-683.
    [17]DIETZ K J,JACOB S,OELZE M L,LAXA M,TOGNETTI V,BAIER M,FINKEMEIER I.The function of peroxiredoxins in plant organelle redox metabolism[J].Journal of Experimental Botany,2006,57(8):1697-1709.
    [18]DIETZ K J.Plant peroxiredoxins[J].Annual Review of Plant Biology,2003,54(1):93-107.
    [19]BAIER M,DIETZ K J.Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases[J].Plant Molecular Biology,1996,31(3):553-564.
    [20]BAIER M,DIETZ K J.The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein:its expressional regulation,phylogenetic origin,and implications for its specific physiological function in plants[J].The Plant Journal,1997,12(1):179-190.
    [21]CHO C W,CHUNG E,HEO J E,SO H A,CHOI H K,KIM DH,CHUNG Y S,CHAE H A,LEE J H.Molecular characterization of a 2-Cys peroxiredoxin induced by abiotic stress in mungbean[J].Plant Cell,Tissue and Organ Culture,2012,108(3):473-484.
    [22]GAO C,ZHANG K,YANG G,WANG Y.Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and exogenous Abscisic Acid(ABA)[J].International Journal of Molecular Sciences,2012,13(12):3751-3764.
    [23]HORLING F,DIETZ K J.Type II peroxiredoxin C,a member of the peroxiredoxin family of Arabidopsis thaliana:its expression and activity in comparison with other peroxiredoxins[J].Plant Physiology and Biochemistry,2002,40(6/8):491-499.
    [24]HORLING F,LAMKEMEYER P,KONIG J,FINKEMEIER I,KANDLBINDER A,BAIER M,DIETZ K J.Divergent light-,ascorbate-,and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis[J].Plant Physiology,2003,131(1):317-325.
    [25]PHILIP Z,MATTHIAS H H,LARS H,WILHELM G.GENE-VESTIGATOR:Arabidopsis thaliana microarray database and analysis toolbox[J].Plant Physiology,2004,136(1):2621-2632.
    [26]BAIER M,STROHER E,DIETZ K J.The acceptor availability at photosystem I and ABA control nuclear expression of 2-Cys peroxiredoxin-A in Arabidopsis thaliana[J].Plant Cell Physiology,2004,45(8):997-1006.
    [27]KIM S Y,JANG H H,LEE J R,SUNG N R,LEE H B,LEE DH,PARK D J,KANG C H,CHUNG W S,LIM C O,YUN D J,KIM W Y,LEE K O,LEE S Y.Oligomerization and chaperone activity of aplant 2-Cyperoxiredoxin in response to oxidative stress[J].Plant Sciences,2009,177(3):227-232.
    [28]DAT J,VANDENABEELE S,VRANOVáE,MONTAGU MV,INZéD,BREUSEGEM F V.Dual action of the active oxygen species during plant stress responses[J].Cellular and Molecular Life Sciences,2000,57(5):779-795.
    [29]KIM M D,KIM Y H,KWON S Y,JANG B Y,LEE S Y,YUND J,CHO J H,KWAK S S,LEE H S.Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants[J].Plant Physiology and Biochemistry,2011,49(8):891-897.
    [30]KIM K H,ALAM I,LEE K W,SHARMIN S A,KWAK S S,LEE S Y,LEE B H.Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses[J].Biotechnology Letters,2010,32(4):571-576.
    [31]BAIER M,DIETZ K J.Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis.Evidence from transgenic Arabidopsis[J].Plant Physiology,1999,119(4):1407-1414.
    [32]CHANG T S,JEONG W,CHOI S Y,YU S Q,KANG S W,RHEE S G.Regulation of PeroxiredoxinsⅠactivity by Cdc2-mediated phosphorylation[J].Journal of Biological Chemistry,2002,227(28):25370-25376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700