Basic science and clinical use of eccentric contractions:History and uncertainties
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Basic science and clinical use of eccentric contractions:History and uncertainties
  • 作者:Kiisa ; C.Nishikawa ; Stan ; L.Lindstedt ; Paul ; C.LaStayo
  • 英文作者:Kiisa C.Nishikawa;Stan L.Lindstedt;Paul C.LaStayo;Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University;Department of Physical Therapy and Athletic Training,University of Utah;
  • 英文关键词:Exercise;;Force enhancement;;Muscle mechanics;;Rehabilitation;;Titin/connectin
  • 中文刊名:SPHS
  • 英文刊名:运动与健康科学(英文版)
  • 机构:Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University;Department of Physical Therapy and Athletic Training,University of Utah;
  • 出版日期:2018-07-15
  • 出版单位:Journal of Sport and Health Science
  • 年:2018
  • 期:v.7
  • 基金:supported by Kiisa Nishikawa: the National Science Foundation (IOS-0732949, IOS-1025806, and IOS1456868 IIP-1237878 and IIP-1521231);; the W.M. Keck Foundation;; the Technology Research Initiative Fund of Northern Arizona University;; Paul LaStayo:National Institutes of Health (ROIAG031255;R21CA114523;R21AG18701(with Stan Lindstedt));; the Foundation for Physical Therapy;; the University of Utah Research Foundation
  • 语种:英文;
  • 页:SPHS201803004
  • 页数:11
  • CN:03
  • ISSN:31-2066/G8
  • 分类号:17-26+130
摘要
The peculiar attributes of muscles that are stretched when active have been noted for nearly a century.Understandably,the focus of muscle physiology has been primarily on shortening and isometric contractions,as eloquently revealed by A.V.Hill and subsequently by his students.When the sliding filament theory was introduced by A.F.Huxley and H.E.Huxley,it was a relatively simple task to link Hill's mechanical observations to the actions of the cross bridges during these shortening and isometric contractions.In contrast,lengthening or eccentric contractions have remained somewhat enigmatic.Dismissed as necessarily causing muscle damage,eccentric contractions have been much more difficult to fit into the cross-bridge theory.The relatively recent discovery of the giant elastic sarcomeric filament titin has thrust a previously missing element into any discussion of muscle function,in particular during active stretch.Indeed,the unexpected contribution of giant elastic proteins to muscle contractile function is highlighted by recent discoveries that twitchin-actin interactions are responsible for the"catch"property of invertebrate muscle.In this review,we examine several current theories that have been proposed to account for the properties of muscle during eccentric contraction.We ask how well each of these explains existing data and how an elastic filament can be incorporated into the sliding filament model.Finally,we review the increasing body of evidence for the benefits of including eccentric contractions into a program of muscle rehabilitation and strengthening.
        The peculiar attributes of muscles that are stretched when active have been noted for nearly a century.Understandably,the focus of muscle physiology has been primarily on shortening and isometric contractions,as eloquently revealed by A.V.Hill and subsequently by his students.When the sliding filament theory was introduced by A.F.Huxley and H.E.Huxley,it was a relatively simple task to link Hill's mechanical observations to the actions of the cross bridges during these shortening and isometric contractions.In contrast,lengthening or eccentric contractions have remained somewhat enigmatic.Dismissed as necessarily causing muscle damage,eccentric contractions have been much more difficult to fit into the cross-bridge theory.The relatively recent discovery of the giant elastic sarcomeric filament titin has thrust a previously missing element into any discussion of muscle function,in particular during active stretch.Indeed,the unexpected contribution of giant elastic proteins to muscle contractile function is highlighted by recent discoveries that twitchin-actin interactions are responsible for the"catch"property of invertebrate muscle.In this review,we examine several current theories that have been proposed to account for the properties of muscle during eccentric contraction.We ask how well each of these explains existing data and how an elastic filament can be incorporated into the sliding filament model.Finally,we review the increasing body of evidence for the benefits of including eccentric contractions into a program of muscle rehabilitation and strengthening.
引文
1.Fenn WO.The relation between the work performed and the energy liberated in muscular contraction.J Physiol 1924;58:373-95.
    2.Lindstedt SL.Skeletal muscle tissue in movement and health:positives and negatives.J Exp Biol 2016;219:183-8.
    3.Abbott BC,Bigland B,Ritchie JM.The physiological cost of negative work.J Physiol 1952;117:380-90.
    4.Elmer SJ,La Stayo PC.Revisiting the positive aspects of negative work.J Exp Biol 2014;217:2434-6.
    5.Schaeffer PJ,Lindstedt SL.How animals move:comparative lessons on animal locomotion.Compr Physiol 2013;3:289-314.
    6.Lombardi V,Piazzesi G.The contractile response during steady lengthening of stimulated frog muscle fibres.J Physiol 1990;431:141-71.
    7.Piazzesi G,Lombardi V.A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle.Biophys J1995;68:1966-79.
    8.Linari M,Piazzesi G,Dobbie I,Koubassova N,Reconditi M,Narayanan T,et al.Interference fine structure and sarcomere length dependence of the axial x-ray pattern from active single muscle fibers.Proc Natl Acad Sci U S A2000;97:7226-31.
    9.Linari M,Woledge RC,Curtin NA.Energy storage during stretch of active single fibres from frog skeletal muscle.J Physiol 2003;548:461-74.
    10.Pinniger GJ,Ranatunga KW,Offer GW.Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle:force-induced reversal of the power stroke.J Physiol 2006;573:627-43.
    11.Minozzo FC,Lira CA.Muscle residual force enhancement:a brief review.Clinics 2013;68:269-74.
    12.Nishikawa KC,Monroy JA,Powers KL,Gilmore LA,Uyeno TA,Lindstedt SL.A molecular basis for intrinsic muscle properties:implications for motor control.Adv Exp Med Biol 2013;782:111-25.
    13.Huxley AF,Simmons RM.Proposed mechanism of force generation in striated muscle.Nature 1971;233:533-8.
    14.Sugi H.Tension changes during and after stretch in frog muscle fibres.JPhysiol 1972;225:237-53.
    15.Marcucci L,Yanagida T.From single molecule fluctuations to muscle contraction:a Brownian model of A.F.Huxley’s hypotheses.PLo S One2012;7:e40042.doi:10.1371/journal.pone.0040042.
    16.Howard J.Molecular motors:structural adaptations to cellular functions.Nature 1997;389:561-7.
    17.Fusi L,Percario V,Brunello E,Caremani M,Bianco P,Powers JD,et al.Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle.J Physiol 2017;595:1127-42.
    18.Huxley A.How molecular motors work in muscle.Nature 1998;391:239-40.
    19.Wakabayashi K,Sugimoto Y,Tanaka H,Ueno Y,Takezawa Y,Amemiya Y.X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.Biophys J 1994;67:2422-35.
    20.Dobbie I,Linari M,Piazzesi G,Reconditi M,Koubassova N,Ferenczi MA,et al.Elastic bending and active tilting of myosin heads during muscle contraction.Nature 1998;396:383-7.
    21.Linari M,Brunello E,Reconditi M,Fusi L,Caremani M,Narayanan T,et al.Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments.Nature 2015;528:276-9.
    22.Ait-Mou Y,Hsu K,Farman GP,Kumar M,Greaser ML,Irving TC,et al.Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin-and thick-filament proteins.Proc Natl Acad Sci U S A 2016;113:2306-11.
    23.Fusi L,Brunello E,Yan Z,Irving M.Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.Nat Commun 2016;7:13281.
    24.Edman KA,Elzinga G,Noble MI.Residual force enhancement after stretch of contracting frog single muscle fibers.J Gen Physiol1982;80:769-84.
    25.Harry JD,Ward AW,Heglund NC,Morgan DL,Mc Mahon TA.Crossbridge cycling theories cannot explain high-speed lengthening behavior in frog muscle.Biophys J 1990;57:201-8.
    26.Walcott S,Herzog W.Modeling residual force enhancement with generic cross-bridge models.Math Biosci 2008;216:172-86.
    27.Edman KA.The force bearing capacity of frog muscle fibres during stretch:its relation to sarcomere length and fibre width.J Physiol1999;519:515-26.
    28.Amemiya Y,Iwamoto H,Kobayashi T,Sugi H,Tanaka H,Wakabayashi K.Time-resolved X-ray diffraction studies on the effect of slow Plength changes on tetanized frog skeletal muscle.J Physiol 1988;407:231-41.
    29.Mehta A,Herzog W.Cross-bridge induced force enhancement.J Biomech 2008;41:1611-5.
    30.Morgan DL.New insights into the behavior of muscle during active lengthening.Biophys J 1990;57:209-21.
    31.Morgan DL.An explanation for residual increased tension in striated muscle after stretch during contraction.Exp Physiol 1994;79:831-8.
    32.Julian FJ,Morgan DL.The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres.J Physiol 1979;293:379-92.
    33.Johnston K,Jinha A,Herzog W.The role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils.RSoc Open Sci 2016;3:150657.doi:10.1098/rsos.150657.
    34.Joumaa V,Leonard TR,Herzog W.Residual force enhancement in myofibrils and sarcomeres.Proc Biol Sci 2008;275:1411-9.
    35.Herzog W.Mechanisms of enhanced force production in lengthening(eccentric)muscle contractions.J Appl Physiol 2014;116:1407-17.
    36.Herzog W.The role of titin in eccentric muscle contraction.J Exp Biol2014;217:2825-83.
    37.Pun C,Syed A,Rassier DE.History-dependent properties of skeletal muscle myofibrils contracting along the ascending limb of the forcelength relationship.Proc Biol Sci 2010;277:475-84.
    38.Leonard TR,Du Vall M,Herzog W.Force enhancement following stretch in a single sarcomere.Am J Physiol Cell Physiol 2010;299:C1398-401.
    39.Telley IA,Stehle R,Ranatunga KW,Pfitzer G,Stussi E,Denoth J.Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils:sarcomere asymmetry but no“sarcomere popping”.J Physiol 2006;573:173-85.
    40.Rassier DE.The mechanisms of the residual force enhancement after stretch of skeletal muscle:non-uniformity in half-sarcomeres and stiffness of titin.Proc Biol Sci 2012;279:2705-13.
    41.Stoecker U,Telley IA,Stussi E,Denoth J.A multisegmental cross-bridge kinetics model of the myofibril.J Theor Biol 2009;259:714-26.
    42.Campbell SG,Hatfield PC,Campbell KS.A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement.PLo S Comput Biol 2011;7:e1002156.doi:10.1371/journal.pcbi.1002156.
    43.Campbell SG,Campbell KS.Mechanisms of residual force enhancement in skeletal muscle:insights from experiments and mathematical models.Biophys Rev 2011;3:199-207.
    44.Huxley H,Hanson J.Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation.Nature1954;173:973-6.
    45.Hanson J,Huxley HE.Quantitative studies on the structure of cross-striated myofibrils.II.Investigations by biochemical techniques.Biochim Biophys Acta 1957;23:250-60.
    46.Rall JA.Mechanism of muscular contraction.New York,NY:Springer;2014.
    47.Dos Remedios C,Gilmour D.An historical perspective of the discovery of titin filaments.Biophys Rev 2017;9:179-88.
    48.Mc Neill PF,Hoyle G.Evidence for superthin filaments.Am Zoologist1967;7:483-98.
    49.Huxley HE.Structural difference between resting and rigor muscle;evidence from intensity changes in the low angle equatorial X-ray diagram.J Mol Biol 1968;37:507-20.
    50.Lindstedt SL,Nishikawa K.Huxleys’missing filament:form and function of titin in vertebrate skeletal muscle.Ann Rev Physiol 2017;79:145-66.
    51.Sjostrand FS.The connections between A-and I-band filaments in striated frog muscle.Annu Rev Physiol 1962;7:225-46.
    52.Maruyama K.Connectin,an elastic protein from myofibrils.J Biochem1976;80:405-7.
    53.Wang K,Mc Clure J,Tu A.Titin:major myofibrillar components of striated muscle.Proc Natl Acad Sci U S A 1979;76:3698-702.
    54.Maruyama K,Kimura S,Ohashi K,Kuwano Y.Connectin,an elastic protein of muscle.Identification of"titin"with connectin.J Biochem1981;89:701-9.
    55.F€urst DO,Osborn M,Nave R,Weber K.The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in Pimmunoelectron microscopy:a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line.J Cell Biol1988;106:1563-72.
    56.Yamada A,Yoshio M,Kojima H,Oiwa K.An in vitro assay reveals essential protein components for the“catch”state of invertebrate smooth muscle.Proc Natl Acad Sci U S A 2001;98:6635-40.
    57.Gregorio CC,Granzier H,Sorimachi H,Labeit S.Muscle assembly:a titanic achievement.Curr Opin Cell Biol 1999;11:18-25.
    58.Labeit S,Kolmerer B.Titins:giant proteins in charge of muscle ultrastructure and elasticity.Science 1995;270:293-6.
    59.Gautel M,Goulding D.A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series.FEBS Lett1996;385:11-4.
    60.Linke WA,Bartoo ML,Ivemeyer M,Pollack GH.Limits of titin extension in single cardiac myofibrils.J Muscle Res Cell Motil 1996;17:425-38.
    61.Linke WA,Ivemeyer M,Mundel P,Stockmeier MR,Kolmerer B.Nature of PEVK-titin elasticity in skeletal muscle.Proc Natl Acad Sci U S A1998;95:8052-7.
    62.Kellermayer MS,Granzier HL.Elastic properties of single titin molecules made visible through fluorescent F-actin binding.Biochem Biophys Res Commun 1996;221:491-7.
    63.Maruyama K,Natori R,Nonomura Y.New elastic protein from muscle.Nature 1976;262:58-60.
    64.Horowits R,Kempner ES,Bisher ME,Podolsky RJ.A physiological role for titin and nebulin in skeletal muscle.Nature 1986;323:160-4.
    65.Horowits R,Podolsky RJ.The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length:evidence for the role of titin filaments.J Cell Biol 1987;105:2217-23.
    66.Linke WA.Titin gene and protein functions in passive and active muscle.Annu Rev Physiol 2018;80:389-411.
    67.Konhilas JP,Irving TC,de Tombe PP.Length-dependent activation in three striated muscle types of the rat.J Physiol 2002;544:225-36.
    68.Mateja RD,Greaser ML,de Tombe PP.Impact of titin isoform on length dependent activation and cross-bridge cycling kinetics in rat skeletal muscle.Biochim Biophys Acta 2013;1833:804-11.
    69.Irving T,Wu Y,Bekyarova T,Farman GP,Fukuda N,Granzier H.Thick-filament strain and interfilament spacing in passive muscle:effect of titin-based passive tension.Biophys J 2011;100:1499-508.
    70.Edman KA,Elzinga G,Noble MI.Proceedings:force enhancement induced by stretch of contracting single isolated muscle fibres of the frog.J Physiol 1976;258(2):95Pà96P.
    71.Edman KA,Tsuchiya T.Strain of passive elements during force enhancement by stretch in frog muscle fibres.J Physiol 1996;490:191-205.
    72.Herzog W,Leonard TR.Force enhancement following stretching of skeletal muscle:a new mechanism.J Exp Biol 2002;205:1275-83.
    73.Joumaa V,Rassier DE,Leonard TR,Herzog W.The origin of passive force enhancement in skeletal muscle.Am J Physiol Cell Physiol2008;294:C74-8.
    74.Bagni MA,Cecchi G,Colombini B,Colomo F.A non-cross-bridge stiffness in activated frog muscle fibers.Biophys J 2002;82:3118-27.
    75.Bagni MA,Colombini B,Geiger P,Berlinguer Palmini R,Cecchi G.Non-cross-bridge calcium-dependent stiffness in frog muscle fibers.Am J Physiol Cell Physiol 2004;286:C1353-7.
    76.Nocella M,Cecchi G,Bagni MA,Colombini B.Force enhancement after stretch in mammalian muscle fiber:no evidence of cross-bridge involvement.Am J Physiol Cell Physiol 2014;307:C1123-9.
    77.Rassier DE,Leite FS,Nocella M,Cornachione AS,Colombini B,Bagni MA.Non-crossbridge forces in activated striated muscles:a titin dependent mechanism of regulation?J Muscle Res Cell Motil 2015;36:37-45.TagedEn
    78.Leonard TR,Herzog W.Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction.Am J Physiol Cell Physiol2010;299:C14-20.
    79.Powers K,Schappacher-Tilp G,Jinha A,Leonard T,Nishikawa K,Herzog W.Titin force is enhanced in actively stretched skeletal muscle.JExp Biol 2014;217:3629-36.
    80.Granzier HL.Activation and stretch-induced passive force enhancementare you pulling my chain?Focus on“Regulation of muscle force in the Pabsence of actin-myosin-based cross-bridge interaction”.Am J Physiol Cell Physiol 2010;299:C11-3.
    81.Herzog W,Schappacher G,Du Vall M,Leonard TR,Herzog JA.Residual force enhancement following eccentric contractions:a new mechanism involving titin.Physiology 2016;31:300-12.
    82.Labeit D,Watanabe K,Witt C,Fujita H,Wu Y,Lahmers S,et al.Calcium-dependent molecular spring elements in the giant protein titin.Proc Natl Acad Sci U S A 2003;100:13716-21.
    83.Kellermayer MS,Granzier HL.Calcium-dependent inhibition of in vitro thin-filament motility by native titin.FEBS Lett 1996;380:281-6.
    84.Rode C,Siebert T,Blickhan R.Titin-induced force enhancement and force depression:a“sticky-spring”mechanism in muscle contractions.JTheor Biol 2009;259:350-60.
    85.Nishikawa KC,Monroy JA,Uyeno TE,Yeo SH,Pai DK,Lindstedt SL.Is titin a“winding filament”?A new twist on muscle contraction.Proc Biol Sci 2012;279:981-90.
    86.Powers K,Nishikawa K,Joumaa V,Herzog W.Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin.J Exp Biol 2016;219:1311-6.
    87.Schappacher-Tilp G,Leonard T,Desch G,Herzog W.A novel three-filament model of force generation in eccentric contraction of skeletal muscles.PLo S One 2015;10:e0117634.doi:10.1371/journal.pone.0117634.
    88.Hessel AL,Nishikawa KC.Effects of a titin mutation on negative work during stretch-shortening cycles in skeletal muscles.J Exp Biol2017;220:4177-85.
    89.Linke WA,Ivemeyer M,Labeit S,Hinssen H,Ruegg JC,Gautel M.Actin-titin interaction in cardiac myofibrils:probing a physiological role.Biophys J 1997;73:905-19.
    90.Linke WA,Kulke M,Li H,Fujita-Becker S,Neagoe C,Manstein DJ,et al.PEVK domain of titin:an entropic spring with actin-binding properties.J Struct Biol 2002;137:194-205.
    91.Linke WA,Fernandez JM.Cardiac titin:molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium.J Muscle Res Cell Motil 2002;23:483-97.
    92.Yamasaki R,Berri M,Wu Y,Trombitas K,Mc Nabb M,Kellermayer MS,et al.Titin-actin interaction in mouse myocardium:passive tension modulation and its regulation by calcium/S100A1.Biophys J2001;81:2297-313.
    93.Garvey SM,Rajan C,Lerner AP,Frankel WN,Cox GA.The muscular dystrophy with myositis(mdm)mouse mutation disrupts a skeletal muscle-specific domain of titin.Genomics 2002;79:146-9.
    94.Du Vall MM,Jinha A,Schappacher-Tilp G,Leonard TR,Herzog W.Differences in titin segmental elongation between passive and active stretch in skeletal muscle.J Exp Biol 2017;220:4418-25.
    95.Hooper SL,Hobbs KH,Thuma JB.Invertebrate muscles:thin and thick filament structure;molecular basis of contraction and its regulation,catch and asynchronous muscle.Prog Neurobiol 2008;86:72-127.
    96.Sugi H,Suzuki S.The nature of potassium-and acetylcholine-induced contractures in the anterior byssal retractor muscle of Mytilus edulis.Comp Biochem Physiol C 1978;61:275-9.
    97.Kenny PA,Liston EM,Higgins DG.Molecular evolution of immunoglobulin and fibronectin domains in titin and related muscle proteins.Gene 1999;232:11-23.
    98.Butler TM,Siegman MJ.Mechanism of catch force:tethering of thick and thin filaments by twitchin.J Biomed Biotechnol 2010;2010:725207.doi:10.1155/2010/725207.
    99.Tameyasu T,Sugi H.The series elastic component and the force-velocity relation in the anterior byssal retractor muscle of Mytilus edulis during active and catch contractions.J Exp Biol 1976;64:497-510.
    100.Takahashi M,Sohma H,Morita F.The steady state intermediate of scallop smooth muscle myosin ATPase and effect of light chain phosphorylation.A molecular mechanism for catch contraction.J Biochem 1988;104:102-7.
    101.Butler TM,Siegman MJ.Control of cross-bridge cycling by myosin light chain phosphorylation in mammalian smooth muscle.Acta Physiol Scand 1998;164:389-400.
    102.Butler TM,Mooers SU,Li C,Narayan S,Siegman MJ.Regulation of catch muscle by twitchin phosphorylation:effects on force,ATPase,and shortening.Biophys J 1998;75:1904-14.
    103.Funabara D,Watabe S.The catch mechanism of anterior bosses retractor muscle in mussel.Nippon Suisan Gakk 2002;68:913-4.
    104.Funabara D,Kanoh S,Siegman MJ,Butler TM,Hartshorne DJ,Watabe S.Twitchin as a regulator of catch contraction in molluscan smooth muscle.J Muscle Res Cell Motil 2005;26:455-60.
    105.Shelud’ko NS,Matusovskaya GG,Permyakova TV,Matusovsky OS.Twitchin,a thick-filament protein from molluscan catch muscle,interacts with F-actin in a phosphorylation-dependent way.Arch Biochem Biophys2004;432:269-77.
    106.Hessel AL,Lindstedt SL,Nishikawa KC.Physiological mechanisms of eccentric contraction and its applications:a role for the giant titin protein.Front Physiol 2017;8:70.doi:10.3389/fphys.2017.00070.
    107.Edwards RH,Newham DJ,Jones DA,Chapman SJ.Role of mechanical damage in pathogenesis of proximal myopathy in man.The Lancet1984;1:548-52.
    108.Newham DJ,Jones DA,Ghosh G,Aurora P.Muscle fatigue and pain after eccentric contractions at long and short length.Clin Sci(Lond)1988;74:553-7.
    109.Flann KL,La Stayo PC,Mc Clain DA,Hazel M,Lindstedt SL.Muscle damage and muscle remodeling:no pain,no gain.J Exp Biol 2011;214:674-9.
    110.Hoppeler H,Herzog W.Eccentric exercise:many questions unanswered.J Appl Physiol 2014;116:1405-6.
    111.La Stayo P,Mc Donagh P,Lipovic D,Napoles P,Bartholomew A,Esser K,et al.Elderly patients and high force resistance exerciseàa descriptive report:can an anabolic,muscle growth response occur without muscle damage or inflammation.J Geriatr Phys Ther 2007;30:128-34.
    112.La Stayo PC,Ewy GA,Pierotti DD,Johns RK,Lindstedt S.The positive effects of negative work:increased muscle strength and decreased fall risk in a frail elderly population.J Gerontol A Biol Sci Med Sci 2003;58:M419-24.
    113.Kraemer WJ,Adams K,Cafarelli E,Dudley GA,Dooly C,Feigenbaum MS,et al.American College of Sports Medicine position stand.Progression models in resistance training for healthy adults.Med Sci Sports Exerc 2002;34:364-80.
    114.La Stayo PC,Pierotti DJ,Pifer J,Hoppeler H,Lindstedt SL.Eccentric ergometry:increases in locomotor muscle size and strength at low training intensities.Am J Physiol Regul Integr Comp Physiol 2000;278:R1282-8.
    115.La Stayo PC,Reich TE,Urquhart M,Hoppeler H,Lindstedt SL.Chronic eccentric exercise:improvements in muscle strength can occur with little demand for oxygen.Am J Physiol 1999;276:R611-5.
    116.Meyer A,Tumilty S,Baxter GD.Eccentric exercise protocols for chronic non-insertional Achilles tendinopathy:how much is enough.Scand JMed Sci Sports 2009;19:609-15.
    117.Hoppeler H.Moderate load eccentric exercise;a distinct novel training modality.Front Physiol 2016;7:483.doi:10.3389/fphys.2016.00483.
    118.La Stayo P,Marcus R,Dibble L,Frajacomo F,Lindstedt S.Eccentric exercise in rehabilitation:safety,feasibility,and application.J Appl Physiol 2014;116:1426-34.
    119.Meyer K,Steiner R,Lastayo P,Lippuner K,Allemann Y,Eberli F,et al.Eccentric exercise in coronary patients:central hemodynamic and metabolic responses.Med Sci Sports Exerc 2003;35:1076-82.
    120.Besson D,Joussain C,Gremeaux V,Morisset C,Laurent Y,Casillas JM,et al.Eccentric training in chronic heart failure:feasibility and functional effects.Results of a comparative study.Ann Phys Rehabil Med 2013;56:30-40.
    121.Rocha Vieira DS,Baril J,Richard R,Perrault H,Bourbeau J,Taivassalo T.Eccentric cycle exercise in severe COPD:feasibility of application.COPD 2011;8:270-4.
    122.Fluck M,Bosshard R,Lungarella M.Cardiovascular and muscular consequences of work-matched interval-type of concentric and eccentric Ppedaling exercise on a soft robot.Front Physiol 2017;8:640.doi:10.3389/fphys.2017.00640.
    123.Steiner R,Meyer K,Lippuner K,Schmid JP,Saner H,Hoppeler H.Eccentric endurance training in subjects with coronary artery disease:a novel exercise paradigm in cardiac rehabilitation.Eur J Appl Physiol2004;91:572-8.
    124.Theodorou AA,Panayiotou G,Paschalis V,Nikolaidis MG,Kyparos A,Mademli L,et al.Stair descending exercise increases muscle strength in elderly males with chronic heart failure.BMC Res Notes 2013;6:87.doi:10.1186/1756-0500-6-87.
    125.Gremeaux V,Duclay J,Deley G,Philipp JL,Laroche D,Pousson M,et al.Does eccentric endurance training improve walking capacity in patients with coronary artery disease?A randomized controlled pilot study.Clin Rehabil 2010;24:590-9.
    126.Casillas JM,Besson D,Hannequin A,Gremeaux V,Morisset C,Tordi N,et al.Effects of an eccentric training personalized by a low rate of perceived exertion on the maximal capacities in chronic heart failure:a randomized controlled trial.Eur J Phys Rehabil Med 2016;52:159-68.
    127.La Stayo PC,Marcus RL,Dibble LE,Smith SB,Beck SL.Eccentric exercise versus usual-care with older cancer survivors:the impact on muscle and mobility-an exploratory pilot study.BMC Geriatr 2011;11:5.doi:10.1186/1471-2318-11-5.
    128.Dibble LE,Addison O,Papa E.The effects of exercise on balance in persons with Parkinson’s disease:a systematic review across the disability spectrum.J Neurol Phys Ther 2009;33:14-26.
    129.Gerber JP,Marcus RL,Dibble LE,Greis PE,Burks RT,La Stayo PC.Effects of early progressive eccentric exercise on muscle structure after anterior cruciate ligament reconstruction.J Bone Joint Surg Am2007;89:559-70.
    130.Gerber JP,Marcus RL,Leland ED,Lastayo PC.The use of eccentrically biased resistance exercise to mitigate muscle impairments following anterior cruciate ligament reconstruction:a short review.Sports Health2009;1:31-8.
    131.La Stayo PC,Meier W,Marcus RL,Mizner R,Dibble L,Peters C.Reversing muscle and mobility deficits 1 to 4 years after TKA:a pilot study.Clin Orthop Relat Res 2009;467:1493-500.
    132.Marcus RL,Lastayo PC,Dibble LE,Hill L,Mc Clain DA.Increased strength and physical performance with eccentric training in women with impaired glucose tolerance:a pilot study.J Womens Health(Larchmt)2009;18:253-60.
    133.Marcus RL,Smith S,Morrell G,Addison O,Dibble LE,Wahoff-Stice D,et al.Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus.Phys Ther 2008;88:1345-54.
    134.van Melick N,van Cingel RE,Brooijmans F,Neeter C,van Tienen T,Hullegie W,et al.Evidence-based clinical practice update:practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus.Br J Sports Med2016;50:1506-15.
    135.Hortobagyi T.The positives of negatives:clinical implications of eccentric resistance exercise in old adults.J Gerontol A Biol Sci Med Sci2003;58:M417-8.
    136.La Stayo P,Marcus R,Dibble L,Wong B,Pepper G.Eccentric versus traditional resistance exercise for older adult fallers in the community:a randomized trial within a multi-component fall reduction program.BMCGeriatrics 2017;17:149.doi:10.1186/s12877-017-0539-8.
    137.Eldridge N,Gould SJ.Punctuated equilibria:an alternative to phyletic gradualism.In:Schopf TJM,editor.Models in paleobiology.San Francisco,CA:Freeman Cooper;1972.p.82-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700