陆面模型Noah-MP的不同参数化方案在沙漠区域的适用性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applicability of Different Parameterization Schemes of Land Surface Model Noah-MP in Desert Areas
  • 作者:李火青 ; 买买提艾力·买买提依明 ; 刘永强 ; 琚陈相
  • 英文作者:LI Huoqing;ALI Mamtimin;LIU Yongqiang;JU Chenxiang;Institute of Desert Meteorology,CMA, Taklimakan Desert Meteorology Field Experiment Station of CMA;College of Resource and Environmental Sciences,Xinjiang University;
  • 关键词:Noah-MP模型 ; 参数化方案 ; 陆面模型 ; 塔克拉玛干沙漠
  • 英文关键词:Noah-MP;;Parameterization Scheme;;Land model;;Taklimakan Desert
  • 中文刊名:XJQX
  • 英文刊名:Desert and Oasis Meteorology
  • 机构:中国气象局乌鲁木齐沙漠气象研究所/中国气象局塔克拉玛干沙漠气象野外科学试验基地;新疆大学资源与环境科学学院;
  • 出版日期:2018-12-28
  • 出版单位:沙漠与绿洲气象
  • 年:2018
  • 期:v.12;No.72
  • 基金:中亚大气科学基金(CAAS201811,CASS201711);; 国家自然科学基(41801019,41875023,41675011,41265002,41605008);; 中央级公益性科研院所基本科研业务费专项(IDM2017001)共同资助
  • 语种:中文;
  • 页:XJQX201806009
  • 页数:10
  • CN:06
  • ISSN:65-1265/P
  • 分类号:62-71
摘要
为研究陆面模型Noah-MP在沙漠下垫面的最优参数化方案组合,本文利用中国气象局塔克拉玛干沙漠气象野外科学试验基地观测数据,根据沙漠环境特征进行不同参数化方案组合的三组模拟实验,利用观测数据对10 cm土壤温湿度、感热、潜热通量模拟值对比分析得出最优组合。研究表明:第三组对10 cm的土壤温度模拟效果最好,主要原因是Chen97感热交换系数和全网格二流近似(gap=0)辐射传输方案比较符合沙漠的环境特征。三组试验对土壤湿度模拟效果差,其主要原因是沙漠的土壤信息未能体现在模式中,第二组选择CLM方案对土壤类型影响蒸发方面有一定考虑,其模拟结果相对较好。对于感热通量,第一、二组模拟值在波峰存在高估,尤其是第二组模拟值在降水后出现了明显低估情况,第三组模拟效果最好,主要得益于选择了感热交换系数Chen97方案,能够较为真实的刻画Ch变化特征。潜热通量在四个特征量中模拟效果最差,主要原因是沙漠土壤水分极低,观测降水和实际进入土壤的水量有差异,另外没有植被和植物根系,模式无法准确计算土壤蒸发和植被蒸散。根据统计分析和泰勒图可知,第三组能够更好地还原沙漠区域的陆面过程。
        In order to study the optimal parameterization scheme of the land surface model Noah-MP in the desert underlying surface, we designed three sets of combinatorial experiments of different parameterization schemes according to the characteristics of the desert environment, which based on the observation data over the Taklimakan Desert Meteorology Field Experiment Station of CMA, and then get the optimal combination of parameterization schemes. The results show that the 3rd experiment has the best simulation effect on soil temperature of 10 cm, the main reason is that the sensible heat exchange coefficient Chen97 and radiation transfer scheme the entire grid cell two-stream approximation(gap=0) are in line with the environment characteristics of the desert. Because of the soil information could not reflected in the model, all of experiments have poor simulation effect of soil moisture, the 2nd experiment chooses soil moisture factor for stomatal resistance scheme CLM which considerated the influence of soil evaporation, so that has better correlation. As for the sensible heat flux, the 1st and 2nd experiment overestimated at the peak, the second set of simulation are significantly underestimated after precipitation especially, the 3rd experiment has the best simulation effect, the mainly reason is that selection of scheme for sensible heat exchange coefficient Chen97,which described the Ch variation characteristics more realistically. Due to the desert soil moisture is extremely low, the latent heat flux has the worst simulation effect among the four characteristic variables, which actual infiltration of soil water is less than observed precipitation, which cannot accurately calculate soil evaporation and vegetation evapotranspiration because that desert has no vegetation and plant roots. Based on the statistical and the Taylor diagram show that the 3rd set of simulations has the best performance in the desert area.
引文
[1]孙菽芬.陆面过程的物理、生化机理和参数化模型[M].气象出版社,2005.
    [2]王洋,曾新民,葛洪彬,等.陆面特征量初始扰动的敏感性及集合预报试验[J].气象,2014,40(2):146-157.
    [3] Wei J,Dirmeyer P A,Guo Z, et al. How much do different land models matter for climate simulation? Part I:climatology and variability[J]. Journal of Climate,2010,23(11):3135-3145.
    [4]李剑铎,段青云,戴永久,等. CoLM模拟土壤温度和湿度最敏感参数的研究[J].大气科学,2013,37(4):841-851.
    [5] Bucchignani E,Mercogliano P,Panitz H J,et al. Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions[J]. Advances in Climate Change Research,2018,9(1).
    [6] Fisher R A, Koven C D,Anderegg W R L,et al.Vegetation demographics in earth system models:A review of progress and priorities[J]. Global Change Biology,2017,24(1).
    [7] Henderson-Sellers A. Soil moisture simulation:Achievements of the RICE and PILPS intercomparison workshop and future directions[J]. Global&Planetary Change,1996,13(14):99-115.
    [8] Chen F, Janjic Z, Mitchell K. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model[J]. BoundaryLayer Meteorology,1997,85(3):391-421.
    [9]马雷鸣,鲍旭炜.数值天气预报模式物理过程参数化方案的研究进展[J].地球科学进展,2017,32(7):679-687.
    [10] Skamarock W C. A description of the advanced research WRF version 3.0[J]. Ncar Technical,2008,113:7-25.
    [11] Barlage M,Tewari M,Chen F,et al. The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP[J]. Climatic Change,2015,129:1480-1573.
    [12] Niu G Y,Yang Z L,Mitchell K E,et al. The community Noah land surface model with multi-parameterization options(Noah-MP):1. Model description and evaluation with local-scale measurements[J]. Journal of Geophysical Research Atmospheres,2011,116:D12109.
    [13] Yang Z L, Niu G Y, Mitchell K E, et al. The community Noah land surface model with multiparameterization options(Noah-MP):2. Evaluation over global river basins[J]. Journal of Geophysical Research Atmospheres,2011,116:D12110.
    [14]王秋云,严明良,包云轩,等.基于不同陆面参数化方案的高温天气数值模拟[J].气象科技,2011,39(5):537-544.
    [15]杨扬,杨启东,孙旭映,等.三个陆面过程模式在西北半干旱区的模拟性能对比[J].气候与环境研究,2016,21(4):405-417.
    [16]赖锡柳,王颖,杨雪玲,等. WRF模式不同陆面过程方案模拟兰州新区低空气象场特征[J].兰州大学学报(自然科学版),2017,53(3):329-340.
    [17] Chen F,Avissar R. The impact of land-surface wetness heterogeneity on mesoscale heat fluxes[J]. Journal of Applied Meteorology,2006,33(11):1323-1340.
    [18]李昀英,叶成志,钟中.陆面参数化方案对两例不同类型暴雨可预报性的影响[J].大气科学,2010,34(2):407-417.
    [19]卢文旭,韦婷婷,张瑛,等.耦合不同陆面过程对江西南部一次暖区特大暴雨过程的模拟试验[J].气象与减灾研究,2017,40(2):100-106.
    [20]叶丹,张述文,王飞洋,等.基于陆面模式Noah-MP的不同参数化方案在半干旱区的适用性[J].大气科学,2017,41(1):189-201.
    [21] Peel M C,Finlayson B L,McMahon T A. Updated world map of the K?ppen-Geiger climate classification[J].Hydrology and earth system sciences discussions,2007,4(2):439-473.
    [22] Yang T,Wang X,Zhao C,et al. Changes of climate extremes in a typical arid zone:Observations and multimodel ensemble projections[J]. Journal of Geophysical Research:Atmospheres,2011,116(D19).
    [23]张强,黄荣辉,王胜,等.西北干旱区陆-气相互作用试验(NWC-ALIEX)及其研究进展[J].地球科学进展,2005,20(4):427-441.
    [24]李火青.塔克拉玛干沙漠腹地陆面过程参数化与模拟[D].新疆大学,2017.
    [25] Chen F,Mitchell K,Schaake J,et al. Modeling of land surface evaporation by four schemes and comparison with FIFE observations[J]. Journal of Geophysical Research.1996,101(D3):7251-7268.
    [26]周荣卫,蒋维楣,刘罡,等.热力粗糙度引入精细城市边界层模式的初步应用[J].大气科学,2007,31(4):53-62.
    [27] Liu Y Q,He Q,Zhang H S,et al. Improving the CoLM in Taklimakan Desert hinterland with accurate key parameters and an appropriate parameterization scheme[J]. Advances in Atmospheric Sciences,2012,29(2):381-390.
    [28] Xue Y K,Sellers P J,Kinter J L,et al. A simplified biosphere model for global climate studies[J]. Journal of Climate,1991,4(3):345-364.
    [29] Oleson K W, Lawrence D M, Bonan G B, et al.Technical description of version 4.0 of the Community Land Model(CLM)[M]. 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700