常/微重力下微结构表面强化沸腾换热研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity
  • 作者:魏进家 ; 刘斌 ; 张永海
  • 英文作者:WEI Jinjia;LIU Bin;ZHANG Yonghai;School of Chemical Engineering and Technology, Xi'an Jiaotong University;State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University;
  • 关键词:微结构 ; 纳米结构 ; 多尺度 ; 传热 ; 池沸腾 ; 微重力 ; 气泡动力学
  • 英文关键词:microstructure;;nanostructure;;multiscale;;heat transfer;;pool boiling;;microgravity;;bubble dynamics
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:西安交通大学化学工程与技术学院;西安交通大学动力工程多相流国家重点实验室;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(51636006,51611130060,51506169)
  • 语种:中文;
  • 页:HGJZ201901004
  • 页数:16
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:21-36
摘要
表面改性是提高沸腾换热性能的重要手段。本文以自主开发的微结构表面为基础,简述了近三年来常重力条件下的微/纳结构表面强化池沸腾换热、临界热流密度预测模型及经验关联、微重力条件下(重力水平为10~(-2)~10~(-3)g0,g0=9.8m/s~2)加热面尺寸对沸腾换热的影响和气泡动力学等方面的研究进展。对柱状微结构参数和排布方式进行优化后的多尺度复合微结构表面相比柱状微结构表面和光滑表面,其壁面温度可分别降低8K和30K以上,而临界热流密度(CHF)则分别提高了28%和119%以上。体积分数为0.02%的乙醇/银纳米流体相对于单纯的乙醇工质,相同条件下换热壁面温度可降低8~15K,而机械作用对CHF约有25%的提高。通过对柱状微结构的几何参数以及临界发生时的供液机理研究,建立了考虑柱状微结构参数的CHF关联式、微/纳结构表面考虑液体毛细芯吸作用的CHF预测模型以及考虑液体铺展速度的CHF预测关联式。根据微重力下加热面尺寸对沸腾的影响的研究,提出了基于恒定热流密度的换热预测关联式。考虑微重力条件下主气泡和小气泡的表面张力,对传统的气泡脱离直径预测的力平衡模型进行了改进,进一步提高了微重力下气泡的脱离半径的预测精度。此外,对近年来以FC-72为工质的其他强化池沸腾换热微结构表面的研究成果进行了总结,并与自主研发的微结构表面换热性能进行了对比与分析,为今后的研究方向和应用指出了方向。
        Surface modification is an important approach to enhance boiling heat transfer. Based on the self-developed microstructure surface, this study reviewed the progress in boiling heat transfer overmicro structured surfaces in the past three years,including the enhanced pool boiling heat transfer overmicro/nanostructured surfaces in normal gravity,model and empirical correlations for CHF(critical heatflux) prediction, and effect of heater size on pool boiling heat as well as bubble dynamics undermicrogravity conditions(the microgravity level is 10~(-2)—10~(-3)g0, g0=9.8m/s~2). Compared to micro-pin-finssurfaces and smooth surface, the wall superheat of the bi-structured surface which achieved the best heattransfer performance was reduced by more than 8K and 30 K respectively, and the CHF was increased by28% and 119% respectively. The wall superheat of the alcohol/silver nanofluid with a volume fraction of0.02% was found decreased by 8—15K under the same conditions compared with the pure ethanol fluid,and the CHF can be increased by about 25% with vibration and agitation. The CHF prediction model ofmicrostructured surfaces considering the liquid capillary effect,and the CHF prediction correlations,whichconsider the geometric parameters of micro-pin-fins and liquid spreading velocity, respectively, wereestablished by studying the effects of the geometric parameters of micro-pin-fins and the fluid supplymechanism on CHF. Based on the results of the influence of the heater size on boiling heat transfer inmicrogravity, the heat transfer prediction correlation based on constant heat flux was proposed.Considering the interaction between the primary bubble and the small bubble in microgravity, a modifiedmodel of bubble diameter was developed and it can predict the bubble departure diameter at medium andhigh heat fluxes more accurately. Meanwhile,the pool boiling heat transfer data from other enhancementtechniques were compared each other. The advantages and shortcomings of various enhanced boiling heat transfer structures were summarizes and analyzed, and the future prospect of boiling heat transfer enhancement was suggested. This review can provide more information for the further study and industrial application.
引文
[1] JAKOB M. Heat transfer in evaporation and condensation-I[J].Am. Soc. Mech. Eng., 1936,58:643-660.
    [2] KURIHARA H M, MYERS J E. The effects of superheat andsurface roughness on boiling coefficients[J]. AIChE J., 1960, 6:83-91.
    [3] ZHANG H, CHEN L. Pool boiling heat transfer on the sinteredporous surfaces[C]//Proceedings of the 4th Miami InternationalSymposium on Multi-Phase Transport Particulate Phenomena,1988:529-538.
    [4] O’CONNOR J P, YOU S M, DONALD, et al. A dielectric surfacecoating technique to enhance boiling heat transfer from high powermicroelectronics[C]//lEEE Transactions on Components, Packaging,and Manufacturing Technology-PART A, 1995, 18:656-663.
    [5] WEI J J, HONDA H. Effects of fin geometry on boiling heattransfer from silicon chips with micro-pin-fins immersed in FC-72[J]. International Journal of Heat and Mass Transfer, 2003, 46:4059-4070.
    [6] HONDA H, WEI J J. Enhanced boiling heat transfer fromelectronic components by use of surface microstructures[J].Experimental Thermal and Fluid Science, 2004, 28:159-169.
    [7] WEI J J, GUO L J, HONDA H. Experimental study of boilingphenomena and heat transfer performances[J]. Heat MassTransfer, 2005, 41:744-755.
    [8] BYON C, CHOI S, KIM S J. Critical heat flux of bi-poroussintered copper coatings in FC-72[J]. International Journal ofHeat And Mass Transfer, 2013, 65:655-661.
    [9] RAHMAN M M,?L?ERO?LU E, MCCARTHY M. Role ofwickability on the critical heat flux of structured superhydrophilicsurfaces[J]. Langmuir the ACS Journal of Surfaces&Colloids,2014, 30(37):11225.
    [10]魏进家,张永海.柱状微结构表面强化沸腾换热研究综述[J].化工学报, 2016, 67(1):97-108.WEI J J, ZHANG Y H. Review of enhanced boiling heat transferover micro-pin-finned surfaces[J]. CIESC Journal, 2016, 67(1):97-108.
    [11]刘泳辰,魏进家,孔新,等.交错排列柱状微结构表面池沸腾换热实验研究[J].西安交通大学学报, 2016, 50(7):13-17.LIU Y C, WEI J J, KONG X, et al. Experimental study on the poolboiling heat transfer on staggered micro-pin-finned surfaces[J].Journal of Xi'an Jiaotong University, 2016, 50(7):13-17.
    [12] ZHANG Y, ZHOU J, ZHOU W, et al. CHF correlation of boilingin FC-72 with micro-pin-fins for electronics cooling[J]. AppliedThermal Engineering, 2018, 138:494-500.
    [13] KONG X, ZHANG Y H, WEI J J, et al. Experimental study of poolboiling heat transfer on novel bistructured surfaces based onmicro-pin-finned structure[J]. Experimental Thermal&Fluidence,2018, 91:9-19.
    [14] KUTATELADZE S S. Heat transfer in condensation and boiling[M]. 2nd ed. AEC-tr-3770:Phys. and Math., 1959.
    [15] Atomic Energy Commission. Hydrodynamics aspects of boilingheat transfer[R]. Atomic Energy Commission Report AECU-4439,ZUBER N:1959.
    [16] MCHALE J P, GARIMELLA S V. Nucleate boiling from smoothand rough surfaces–Part 1:Fabrication and characterization of anoptically transparent heater–sensor substrate with controlledsurface roughness[J]. Experimental Thermal and Fluid Science,2013, 44:456-467.
    [17] UJEREH S, FISHER T, MUDAWAR I. Effects of carbon nanotubearrays on nucleate pool boiling[J]. International Journal of Heatand Mass Transfer, 2007, 50:4023-4038.
    [18] WU W, BOSTANCI H, CHOW L C, et al. Nucleate boiling heattransfer enhancement for water and FC-72 on titanium oxide andsilicon oxide surfaces[J]. International Journal of Heat&MassTransfer, 2010, 53(9):1773-1777.
    [19] HO J Y, LEONG K C, YANG C. Saturated pool boiling fromcarbon nanotube coated surfaces at different orientations[J].International Journal of Heat&Mass Transfer, 2014, 79:893-904.
    [20] SLOMSKI E M, FISCHER S, SCHEERER H, et al. Textured CrNthin coatings enhancing heat transfer in nucleate boiling processes[J]. Surface&Coatings Technology, 2013, 215(4):465-471.
    [21] AN S, KIM D Y, LEE J G, et al. Supersonically sprayed reducedgraphene oxide film to enhance critical heat flux in pool boiling[J].International Journal of Heat&Mass Transfer, 2016, 98:124-130.
    [22] BON B, KLAUSNER J F, MCKENNA E. The Hoodoo:a newsurface structure for enhanced boiling heat transfer[J]. Journal ofThermal Science&Engineering Applications, 2013, 5:011003-1.
    [23] YU C K, LU D C, CHENG T C. Pool boiling heat transfer onartificial micro-cavity surfaces in dielectric fluid FC-72[J].Journal of Micromechanics and Microengineering, 2006, 16:2092.
    [24] HO J Y, WONG K K, LEONG K C. Saturated pool boiling of FC-72 from enhanced surfaces produced by Selective Laser Melting[J]. International Journal of Heat&Mass Transfer, 2016, 99:107-121.
    [25] WONG K K, LEONG K C. Saturated pool boiling enhancementusing porous lattice structures produced by Selective Laser Melting[J]. International Journal of Heat&Mass Transfer, 2018, 121:46-63.
    [26] YU C K, LU D C. Pool boiling heat transfer on horizontalrectangular fin array in saturated FC-72[J]. International Journalof Heat&Mass Transfer, 2007, 50(17):3624-3637.
    [27] KIM T Y, WEIBEL J A, GARIMELLA S V. A free-particles-based technique for boiling heat transfer enhancement in a wettingliquid[J]. International Journal of Heat&Mass Transfer, 2014, 71(3):808-817.
    [28] SARANGI S, WEIBEL J A, GARIMELLA S V. Effect of particlesize on surface-coating enhancement of pool boiling heat transfer[J]. International Journal of Heat&Mass Transfer, 2015, 81:103-113.
    [29] PARKER J L, EL-GENK M S. Enhanced saturation andsubcooled boiling of FC-72 dielectric liquid[J]. InternationalJournal of Heat And Mass Transfer, 2005, 48:3736-3752.
    [30] AHN H S, PARK G, JI M K, et al. The effect of water absorptionon critical heat flux enhancement during pool boiling[J].Experimental Thermal&Fluid Science, 2012, 42(5):187-195.
    [31] JOTHI PRAKASH C G, PRASANTH R. Enhanced boiling heattransfer by nano structured surfaces and nanofluids[J]. Renewableand Sustainable Energy Reviews, 2018, 82(3):4028-4043.
    [32] DAS S K, PUTRA N, ROETZEL W. Pool boiling characteristics ofnano-fluids[J]. Heat Transfer, 2003, 46:851-862.
    [33] KONG X, QI B J, WEI J J, et al. Boiling heat transferenhancement of nanofluids on a smooth surface with agitation[J].Heat and Mass Transfer, 2016, 52(12):2769-2780.
    [34] LIU B, CAO Z, ZHANG Y H. Pool boiling heat transfer of n-pentane on micro/nanostructured surfaces[J]. International Journalof Thermal Sciences, 2018, 130:386–394.
    [35] CAO Z, LIU B, PREGER C, et al. Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition[J]. Int.J. Heat Mass Transfer, 2018,126A:1019-1033.
    [36] BAKHRU N, Lienhard J H. Boiling from small cylinders[J]. Int. J.Heat Mass Transfer, 1972, 15:2011-2025.
    [37] HENRY C D, KIM J. A study of the effects of heater size,subcooling, and gravity level on pool boiling heat transfer[J]. Int. J.Heat Fluid Flow, 2004, 25:262-273.
    [38] RAJ R, KIM J, MCQUILLEN J. Pool boiling heat transfer on theinternational space station:experimental results and modelverification[J]. Journal of Heat Transfer, 2012, 134:101504-1-14.
    [39] RAJ R, KIM J, MCQUILLEN J. Gravity scaling parameter for poolboiling heat transfer[J]. J. Heat Transfer, 2010, 132:091502.
    [40] RAJ R, KIM J, MCQUILLEN J. Subcooled pool boiling in variablegravity environments[J]. Heat Transfer, 2009, 131:091502.
    [41] RAJ R, KIM J. Heater size and gravity based pool boiling regimemap:transition criteria between buoyancy and surface tensiondominated boiling[J]. J. Heat Transfer, 2010, 132:091503.
    [42] RAJ R, KIM J, MCQUILLEN J. On the scaling of pool boiling heatflux with gravity and heater size[J]. J. Heat Transfer, 2012, 134:011502.
    [43] WANG X L, ZHANG Y H, QI B J, et al. Experimental study of theheater size effect on subcooled pool boiling heat transfer of FC-72in microgravity[J]. Experimental Thermal and Fluid Science,2016, 76:275-286.
    [44] STRAUB J. Boiling heat transfer and bubble dynamics inmicrogravity[J]. Advances in Heat Transfer, 2001, 35:57-172.
    [45]齐宝金,魏进家,王雪丽,等.微重力下加热面尺寸对气泡动力学行为的影响[J].空间科学学报, 2017, 37(4):455-467.QI B J, WEI J J, WANG X L, et al. Influence of chip size onbubble dynamic behavior in microgravity[J]. Chinese Journal ofSpace Science, 2017, 37(4):455-467.
    [46] QI B J, WEI J J, WANG X L, et al. Influences of wake-effects onbubble dynamics by utilizing micro-pin-finned surfaces undermicrogravity[J]. Applied Thermal Engineering, 2017, 113:1332-1344.
    [47] MARCO P D, GRASSI W. Effects of external electric field on poolboiling:comparison of terrestrial and microgravity data in theARIEL experiment[J]. Experimental Thermal and Fluid Science,2011, 35(5):780-787.
    [48]齐宝金,魏进家,赵建福,等.短时微重力下气泡尾流效应的动力学特性研究[J].工程热物理学报, 2015, 36(1):184-188.QI B J, WEI J J, ZHAO J F, et al. Dynamics study on bubble wakeeffect under short period of microgravity[J]. Journal of EngineeringThermophysics, 2015, 36(1):184-188.
    [49] KARRI S. Dynamics of bubble departure in micro-gravity[J].Chem. Eng. Commun., 1988, 70(1):127-135.
    [50] XUE Y F, ZHAO J F, WEI J J, et al. Experimental study ofnucleate pool boiling of FC-72 on micro-pin-finned surfaceunder microgravity[J]. International Journal of Heat and MassTransfer, 2013, 63:425-433.
    [51] ZHANG Y H, WEI J J, XUE Y F, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Applied Thermal Engineering, 2014, 70:172-182.
    [52] ZHOU J, ZHANG Y H, WEI J J. A modified bubble dynamicsmodel for predicting bubble departure diameter on micro-pin-finned surfaces under microgravity[J]. Applied ThermalEngineering, 2018, 132:450-462.
    [53] FRITZ W, ENDE W. Berechnung des maximalvolumens vondampfslasen[J]. Phys. Z., 1935, 36:379-384.
    [54] COLE R. Bubble frequencies and departure volumes atsubatmospheric pressures[J]. AIChE J., 1967, 13:779-783.
    [55] COLE R, ROHSENOW W M. Correlation of bubble departurediametersfor boiling of saturated liquids[J]. Chem. Eng. Prog.,1966, 65:211-213.
    [56] CHEN Y M, MAYINGER F. Measurement of heat transfer atphase interface of condensing bubble[J]. Int. J. Multiphase Flow,1992, 18(6):877-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700