基于基因分型技术的燕麦SNP标记研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Oat SNP Markers Based on Genotyping Technology
  • 作者:董艳辉 ; 刘龙龙 ; 温鑫 ; 于宇凤 ; 杨方 ; 刘根科 ; 崔林 ; 曹秋芬 ; 秦永军
  • 英文作者:DONG Yanhui;LIU Longlong;WEN Xin;YU Yufeng;YANG Fang;LIU Genke;CUI Lin;CAO Qiufen;QIN Yongjun;Biotechnology Research Center,Shanxi Academy of Agriculture Sciences;Institute of Crop Germplasm Resources,Shanxi Academy of Agriculture Sciences,Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau,Ministry of Agriculture;Institute of Agricultural Science and Technology Information,Shanxi Academy of Agricultural Sciences;Youyu Experiment Stations,Shanxi Academy of Agricultural Sciences;
  • 关键词:燕麦 ; 基因分型技术 ; 抗旱 ; 基因型 ; SNP
  • 英文关键词:Oats;;GBS;;Drought tolerance;;Genotype;;SNP
  • 中文刊名:HBNB
  • 英文刊名:Acta Agriculturae Boreali-Sinica
  • 机构:山西省农业科学院生物技术研究中心;山西省农业科学院农作物品种资源研究所农业部黄土高原种质资源实验室;山西省农业科学院农业科技信息研究所;山西省农业科学院右玉农业试验站;
  • 出版日期:2019-02-28
  • 出版单位:华北农学报
  • 年:2019
  • 期:v.34
  • 基金:山西省重点研发(社会发展)项目(201703D321024);; 山西省农科院重点项目(YZD1508);山西省农科院种业专项(2016zyzx51);; 国家燕麦荞麦产业技术体系(CARS-07-A2)
  • 语种:中文;
  • 页:HBNB201901018
  • 页数:10
  • CN:01
  • ISSN:13-1101/S
  • 分类号:101-110
摘要
为加快燕麦分子辅助育种进程,以1981-1983年进行抗旱性鉴定的42份燕麦种质(18份低抗、13份中抗、11份高抗)和12个未鉴定的燕麦育成品种为试验材料,采用PstⅠ/MspⅠ双酶切的dd-GBS基因分型技术构建燕麦简化基因组参考序列,通过Stacks、主成分分析、Fisher Test和Blast分析研究燕麦SNP分子标记。测序结果表明,燕麦个体的高质量reads数在4 111 218~19 019 296,利用Stacks软件成功组装753 325条燕麦简化基因组参考序列,共注释74 657个群体SNP位点。主成分分析表明,燕麦SNP基因型大致聚为2簇,其中一簇主要由14份低抗种质组成,另一簇则包含全部11份高抗种质。进一步的Fisher Test差异显著性统计分析表明,相对于燕麦低抗种质材料,共有2 937个SNP标记在燕麦高抗种质材料中差异显著((错误发现率False Discovery Rate,FDR)<0. 05),其中,55个SNP标记差异极显著(FDR <0. 001)。将上述55个SNP标记所在源序列与小麦基因组序列在Phytozome数据库中进行比对(Blast)发现,14个SNP位点可能参与燕麦抗旱生物学信号通路基因的表达,其中包括参与植物激素信号转导来调控燕麦的抗逆性。通过GBS技术成功组装的燕麦简化基因组参考序列,丰富了当前燕麦的基因组数据库。通过统计学分析得到的55个SNP标记与小麦基因组数据库进行比对,结果发现,14个SNP标记将对燕麦分子辅助育种和加速育种进程具有重要的指导意义,更可为今后的燕麦种质资源大规模快速筛选奠定技术基础。
        To accelerate marker assisted selection molecular breeding of oat,we had performed genotyping-bysequencing( GBS) analysis in a group of oat verities with multiple years of drought tolerance characteristics,including 18 low drought tolerance,13 moderate drought tolerance,11 high drought tolerance and 12 uncharacterized oat varieties,respectively. GBS libraries were constructed by PstⅠ/Msp Ⅰ double restriction enzymes digestions and subsequently sequenced based on next generation sequencing technology. Using Stacks pipelines,the reduced oats reference genome were annotated and populations SNPs of each sample was identified through Stacks pipeline.The significance was analyzed using PCA,Fisher Test( Hommel package,R script) and Blast. Sequencing results showed that the number of high quality reads in oat individuals ranged from 4 111 218 to 19 019 296. In total,753325 references sequences were annotated. By refer to the reference sequences,the populations SNPs were determined for each sample and in total 74 657 SNPs were identified. Based on the populations SNPs,PCA analysis showed that two clusters were formed,one cluster primarily consisted of 14 low drought tolerance germplasm,whereas another one harbors all 11 high drought-tolerance germplasm. Furthermore,comparison between low and high drought tolerance oats showed that in total 2 937 SNPs were significantly and differentially expressed( FDR <0. 05). Blasting of 55 SNPs with the most significant difference( FDR < 0. 001) hosting sequences indicates 14 SNPs might be involved in variant biological pathways including plant hormone signal transduction. This annotated genomic sequences by this study greatly enriched the present available oat genome database. By alignment with the wheat genomic database,the identified 14 SNPs might play an important role of advancing oats molecular breeding.Moreover,it provides a solid technical basis for further large scale screening of oats germplasm.
引文
[1] Wang Q,Ellis P R. Oat beta-glucan:physico-chemicalcharacteristics in relation to its blood-glucose and cholester-ol-lowering properties[J]. British Journal of Nutrition,2014,112(2):S4-S13. doi:10. 1017/S0007114514002256.
    [2]任顺成,马瑞萍.燕麦的功效因子及其保健功能[J].粮食科技与经济,2013,38(3):58-60. doi:10.16465/j. gste. 2013. 03. 015.Ren S C,Ma R P. Efficacy factor and health care func-tion of oat[J]. Grain Science and Technology and Econo-my,2013,38(3):58-60. doi:10. 16465/j. gste. 2013.03. 015.
    [3] Herranen M,Kariluoto S,Edelmann M,Piironenb V,Ahvenniemib K,Iivonenb V,Salovaarab H,Korhola M,et al. Isolation and characterization of folate-producingbacteria from oat bran and rye flakes[J]. InternationalJournal of Food Microbiology,2010,142(3):277-285.doi. org/10. 1016/j. ijfoodmicro. 2010. 07. 002.
    [4]崔林,杨才,任长忠,付晓峰,张宗文,乔治军,范银燕,刘根科,韩美善,刘龙龙.燕麦育种技术基础研究及新品种选育[J].中国科技成果,2014(10):21-23. doi:10. 3772/j. issn. 1009-5659. 2014. 10. 009.Cui L,Yang C,Ren C Z,Fu X F,Zhang Z W,Qiao ZJ,Fan Y Y,Liu G K,Han M S,Liu L L. Basic re-search on oat breeding technology and breeding of new va-rieties[J]. China Science and Technology Achievements,2014(10):21-23. doi:10. 3772/j. issn. 1009-5659.2014. 10. 009.
    [5] Diederichsen A. Assessments of genetic diversity within aworld collection of cultivated hexaploid oat(Avena sativaL.)based on qualitative morphological characters[J].Genetic Resources and Crop Evolution,2008,55(3):419-440. doi:10. 1007/s10722-007-9249-y.
    [6]徐微,张宗文,吴斌,崔林.裸燕麦种质资源AFLP标记遗传多样性分析[J].作物学报,2009,35(12):2205-2212. doi:10. 3724/SP. J. 1006. 2009. 02205.Xu W,Zhang Z W,Wu B,Cui L. Genetic diversity innaked oat(Avena nuda)germplasm revealed by AFLPmarkers[J]. Acta Agronomica Sinica,2009,35(12):2205-2212. doi:10. 3724/SP. J. 1006. 2009. 02205.
    [7]王玉亭.燕麦籽粒皮裸性基因遗传与分子作图[D].北京:中国农业科学院,2011.Wang Y T. Genetic and molecular mapping of nakedgenes in oat seed skin[D]. Beijing:The Chinese Acade-my of Agricultural Sciences,2011.
    [8]吴斌,张茜,宋高原,陈新,张宗文.裸燕麦SSR标记连锁群图谱的构建及β-葡聚糖含量QTL的定位[J].中国农业科学,2014,47(6):1208-1215. doi:10. 3864/j. issn. 0578-1752. 2014. 06. 017.Wu B,Zhang Q,Song G Y,Chen X,Zhang Z W. Con-struction of SSR genetic linkage map and analysis of QTLsrelated toβ-glucan content of naked oat(Avena nuda L.)[J]. Scientia Agricultura Sinica,2014,47(6):1208-1215. doi:10. 3864/j. issn. 0578-1752. 2014. 06. 017.
    [9] Moumouni K H, Kountche B A, Jean M, Hash C,Haussmann B,Belzile F. Construction of a genetic mapfor pearl millet,Pennisetum glaucum(L.)R. Br.,u-sing a genotyping-by-sequencing(GBS)approach[J].Molecular Breeding,2015,35(1):5. doi:10. 1007/s11032-015-0212-x.
    [10] Lin M,Cai S,Wang S,Liu S,Zhang G,Bai G. Geno-typing-by-sequencing(GBS)identified SNP tightlylinked to QTL for pre-harvest sprouting resistance[J].Theoretical and Applied Genetics,2015,128(7):1385-1395. doi:10. 1007/s00122-015-2513-1.
    [11] Tumino G,Voorrips R E,Rizza F,Badeck F W,Mor-cia C,Ghizzoni R,Germeier C U,Paulo M J,Terzi V,Smulders M J. Population structure and genome-wide as-sociation analysis for frost tolerance in oat using continu-ous SNP array signal intensity ratios[J]. Theoretical andApplied Genetics,2016,129(9):1711-1724. doi:10.1007/s00122-016-2734-y.
    [12] Nawaz M Y,Jimenez-Krassel F,Steibel J P,Lu Y,Baktula A,Vukasinovic N,Neuder L,Ireland J,Ire-land J J,Tempelman R. Genomic heritability and ge-nome-wide association analysis of anti-M llerian hormonein Holstein dairy heifers[J]. Journal of Dairy Science,2018,101(9):1425-1430. doi:org/10. 3168/jds.2018-14798.
    [13] Torkamaneh D,Laroche J,Belzile F. Genome-wide SNPcalling from genotyping by sequencing(GBS)data:acomparison of seven pipelines and two sequencing tech-nologies[J]. PLo S One,2016,11(8):e0161333. doi:10. 1371/journal. pone. 0161333.
    [14] Peterson G W,Dong Y,Horbach C,Yong B F. Genoty-ping-by-sequencing for plant genetic diversity analysis:aLab guide for SNP genotyping[J]. Diversity,2014,6(4):665-680. doi:org/10. 3390/d6040665.
    [15] Rasheed A,Hao Y F,Xia X C,Khan A A,VarshneyR K,He Z H. Crop breeding chips and genotyping plat-forms:progress,challenges,and perspectives[J]. Mo-lecular Plant,2017,10(8):1047-1064. doi:10. 1016/j. molp. 2017. 06. 008.
    [16] Scheben A,Batley J,Edwards D. Genotyping-by-se-quencing approaches to characterize crop genomes:choosing the right tool for the right application[J].Plant biotechnology Journal,2017,15(2):149-161.doi:org/10. 1111/pbi. 12645.
    [17] Miller M R,Dunham J P,Amores A,Cresko W A,Johnson E A. Rapid and cost-effective polymorphism i-dentification and genotyping using restriction site associ-ated DNA(RAD)markers[J]. Genome Research,2007,17(2),240-248. doi:10. 1101/gr. 568120.
    [18] Wang S,Meyer E,Mckay J K,Matz M V. 2b-RAD:asimple and flexible method for genome-wide genotyping[J]. Nature Methods,2012,9(8):808. doi:10. 1038/NMETH. 2023.
    [19] Elshire R J, Glaubitz J C, Sun Q, Poland J A,Kawamoto K,Buckler E S,Mitchell S E. A robust,sim-ple genotyping-by-sequencing(GBS)approach for highdiversity species[J]. PLo S One,2011,6(5):e19379.doi:10. 1371/journal. pone. 0019379.
    [20] Peterson B K,Weber J N,Kay E H,Fisher H S,Hoekstra H E. Double digest RADseq:an inexpensivemethod for De Novo SNP discovery and genotyping inmodel and Non-Model species[J]. PLo S One,2012,7(5):0037135. doi:10. 1371/journal. pone. 0037135.
    [21] Sun X W,Liu D Y,Zhang X F,Li W A,Hong W G,Jiang C B,Guan N,Ma C X,Zeng H P,Xu C H,SongJ,Huang L,Wang C M,Shi J J,Wang R,Zheng XA,Wang X W,Zheng H K. SLAF-seq:an efficientmethod of large-scale De Novo SNP discovery and geno-typing using high-throughput sequencing[J]. PLo S One,2013,8(3):0058700. doi:10. 1371/journal. pone.e58700.
    [22] Alipour H,Bihamta M R,Mohammadi V A,Bai G H,Zhang G R. Genotyping-by-Sequencing(GBS)revealedmolecular genetic diversity of iranian wheat landracesand cultivars[J]. Frontiers in Plant Science,2017,8:01293. doi:10. 3389/fpls. 2017. 01293.
    [23] Annicchiarico P,Nazzicari N,Wei Y L,Pecetti L,Brummer E C. Genotyping-by-sequencing and its exploi-tation for forage and cool-season grain legume breeding[J]. Frontiers in Plant Science,2017,8:679. doi:10.3389/fpls. 2017. 00679.
    [24] Chang C W,Wang Y H,Tung C W. Genome-wide sin-gle nucleotide polymorphism discovery and the construc-tion of a high-density genetic map for melon(Cucumismelo L.)using genotyping-by-sequencing[J]. Frontiersin Plant Science,2017,8:125. doi:10. 3389/fpls. 2017.00125.
    [25] Ertiro B T,Semagn K,Das B,Olsen M,LabuschagneM,Worku M,Wegary D A,Ogugo V,Keno T,AbebeB A,Menkir A. Genetic variation and population struc-ture of maize inbred lines adapted to the midaltitude sub-humid maize agro-ecology of Ethiopia using single nucle-otide polymorphic(SNP)markers[J]. BMC Genomics,2017,18(1):777. doi:10. 1186/s12864-017-4173-9.
    [26] Gouesnard B,Negro S,Laffray A,Glaubitz J,Melch-inger A, Revilla P, Moreno-Gonzalez J, Madur D,Combes V,Tollon-Cordet C,Laborde J,Kermarrec D,Bauland C,Moreau L,Charcosset A,Nicolas S. Geno-typing-by-sequencing highlights original diversity pat-terns within a European collection of 1191 maize flintlines,as compared to the maize USDA genebank[J].Theoretical and Applied Genetics,2017,130(10):2165-2189. doi:10. 1007/s00122-017-2949-6.
    [27] Jo J,Purushotham P M,Han K,Lee H R,Nah G,Kang B C. Development of a genetic map for onion(Al-lium cepa L.)using reference-free genotyping-by-se-quencing and SNP assays[J]. Frontiers in Plant Sci-ence,2017,8:1606. doi:10. 3389/fpls. 2017. 01606.
    [28] Kumar S,Kirk C,Deng C,Wiedow C. Genotyping-by-sequencing of pear(Pyrus spp.)accessions unravelsnovel patterns of genetic diversity and selection footprints[J]. Horticulture research,2017,4:17015. doi:10.1038/hortres. 2017. 15.
    [29] Malmberg M M,Pembleton L W,Baillie R C,Sudhe-esh S,Kaur S A,Verma P,Spangenberg G C,Forster JW, Cogan N O. Genotyping-by-sequencing throughtranscriptomics:implementation in a range of crop spe-cies with varying reproductive habits and ploidy levels[J]. Plant Biotechnology Journal,2018,16(4):877-889. doi:10. 1111/pbi. 12835.
    [30] Otto L G,Mondal P,Brassac J,Preiss S,DegenhardtJ,He S,Reif J C,Sharbel T F. Use of genotyping-by-sequencing to determine the genetic structure in the me-dicinal plant chamomile,and to identify flowering timeand alpha-bisabolol associated SNP-loci by genome-wideassociation mapping[J]. BMC Genomics,2017,18(1):599. doi:org/10. 1186/s12864-017-3991-0.
    [31] Winkler L R,Bonman J M,Chao S A,Bockelman H,Klos K E. Population structure and genotype phenotypeassociations in a collection of oat landraces and historiccultivars[J]. Frontiers in Plant Science,2016,7:1077.doi:10. 3389/fpls. 2016. 1077.
    [32] Huang Y F,Poland J A,Wight C P,Jackson E W,Tinker N A. Using Genotyping-By-Sequencing(GBS)for genomic discovery in cultivated oat[J]. PLo S One,2014,9(7):102448. doi:10. 1371/journal. pone.0102448.
    [33]刘龙龙,张丽君,马名川,韩渊怀,周建萍,崔林.山西省燕麦产业现状及发展趋势[J].山西农业大学学报(自然科学版),2016,36(12):905-907,912.doi:10. 13842/j. cnki. issn1671-8151. 2016. 12. 012.Liu L L,Zhang L J,Ma M C,Han Y H,Zhou J P,CuiL. Current status and developing trend of oat industry inShanxi[J]. Journal of Shanxi Agricultural University(Natural Science Edition),2016,36(12):905-907,912. doi:10. 13842/j. cnki. issn1671-8151. 2016. 12.012.
    [34] Schubert M,Lindgreen S,Orlando L. Adapter Removalv2:rapid adapter trimming,identification,and read mer-ging[J]. BMC Research Notes,2016,9(1):88. doi:10. 1186/s13104-016-1900-2.
    [35] Catchen J,Hohenlohe P A,Bassham S,Amores A,Cresko W A. Stacks:an analysis tool set for populationgenomics[J]. Molecular Ecology,2013,22(11):3124-3140. doi:10. 1111/mec. 12354.
    [36] Owens D M,Keyse S M. Differential regulation of MAPkinase signalling by dual-specificity protein phosphatases[J]. Oncogene,2007,26(22):3203-3213. doi:10.1038/sj. onc. 1210412.
    [37] Aksaas A,Larsen A V,Rogne M,Rosendale K,Kvis-sel A K,Sk lhegg B S. G-patch domain and KOW mo-tifs-containing protein,GPKOW; a nuclear RNA-bindingprotein regulated by protein kinase A[J]. Journal of Mo-lecular Signaling,2011,6(1):10. doi:10. 1186/1750-2187-6-10.
    [38] Laloi C,Rayapuram N,Chartier Y,Rayapuram N,Chartier Y,Grienenberger J M,Bonnard J,Meyer Y. I-dentification and characterization of a mitochondrial thi-oredoxin system in plants[J]. Proceedings of the Nation-al Academy of Sciences,2001,98(24):14144-14149.doi:10. 1073/pnas. 241340898
    [39] Wang Y P,Nishimura M T,Zhao T,Tang D Z. ATG2,an autophagy-related protein,negatively affects powderymildew resistance and mildew-induced cell death in Ara-bidopsis[J]. Plant Journal,2011,68(1):74-87. doi:10. 1111/j. 1365-313X. 2011. 04669. x.
    [40] Colcombet J,Lopez-Obando M,Heurtevin L A,MartinK,Berthome R,Lurin C. Systematic study of subcellularlocalization of Arabidopsis PPR proteins confirms a mas-sive targeting to organelles[J]. RNA Biology,2013,10(9):1557-1575. doi:10. 4161/rna. 26128.
    [41] Ganie S A,Pani D R,Mondal T K. Genome-wide analy-sis of DUF221 domaincontaining gene family in Oryzaspecies and identification of its salinity stress-responsivemembers in rice[J]. PLo S One,2017,12(8):e0182469.doi:10. 1371/journal. pone. 0182469.
    [42] Banerjee A,Roychoudhury A. WRKY proteins:signa-ling and regulation of expression during abiotic stress re-sponses[J]. The Scientific World Journal,2015,200:807560. doi:10. 1155/2015/807560.
    [43] Gu X B,Gao Z H,Yan Y C,Wang X Y,Qiao Y S,Chen Y H. Rdre B1BI enhances drought tolerance by ac-tivating AQP-related genes in transgenic strawberry[J].Plant Physiology and Biochemistry,2017,119:33-42.doi:10. 1016/j. plaphy. 2017. 08. 013.
    [44] Neale A D,Wahleithner J A,Lund M,Bonnett H T,Kelly A,Meeks-Wagner D R,Peacock W J,Dennis ES. Chitinase,beta-1,3-glucanase,osmotin,and exten-sin are expressed in tobacco explants during flower for-mation[J]. The Plant Cell,1990,2(7):673-684. doi:10. 1105/tpc. 2. 7. 673.
    [45] Even Y,Bennett J L,Sekulovic S,Rossi F V. NUP98-HOXA10hd-expanded hematopoietic stem cells efficient-ly reconstitute bone marrow of mismatched recipients andinduce tolerance[J]. Cell Transplantation,2011,20(7):1099-1108. doi:10. 3727/096368910X545068.
    [46] Robledo D,Palaiokostas C,Bargelloni L,Mart nez P,Houston R. Applications of genotyping by sequencing inaquaculture breeding and genetics[J]. Reviews in Aqua-culture,2018,10(3):670-682. doi:org/10. 1111/raq. 12193.
    [47] Crossa J,Pérez P,de los campos G,Muhuku G,Dreisi-gacker S,Magorokosho C. Genomic selection and predic-tion in plant breeding[J]. Journal of Crop Improvement,2011,25(3):239-261. doi:org/10. 1080/15427528.2011. 558767.
    [48] Makumburage G B,Richbourg H L,Latorre K D,CappsA,Chen C,Stapleton A E. Genotype to phenotypeMaps:multiple input abiotic signals combine to producegrowth effects via attenuating signaling interactions inmaize[J]. G3-Genes Genomes Genetics,2013,3(12):2195-2204. doi:10. 1534/g3. 113. 008573.
    [49] Mcnally K L,Naredo M E,Cairns J. SNP discovery atcandidate genes for drought responsiveness in rice[M].Drought Frontiers in Rice:Crop Improvement for In-creased Rainfed Production,2009:311-324. doi:10.1142/9789814280013_0017.
    [50] Homolka A,Eder T,Kopecky D,Berenyi M,Burg K,Fluch S. Allele discovery of ten candidate drought-re-sponse genes in Austrian oak using a systematically in-formatics approach based on 454 amplicon sequencing[J]. BMC Research Notes,2012,5(1):175. doi:10.1186/1756-0500-5-175.
    [51] Cortés A J,Monserrate F A,Ram rez-Villegas J,Madrin S,Blair M W. Drought tolerance in wild plant popula-tions:the case of common beans(Phaseolus vulgarisL.)[J]. PLo S One,2013,8(5):e62898. doi:org/10.1371/journal. pone. 0062898.
    [52] Bhullar N K,Zhang Z Q,Wicker T,Keller B. Wheatgene bank accessions as a source of new alleles of thepowdery mildew resistance gene Pm3:a large scale al-lele mining project[J]. BMC Plant Biology,2010,10(88):1471-2229. doi:10. 1186/1471-2229-10-88.
    [53] Cattivelli L,Rizza F,Badeck F W,Mazzucotelli E,Mastrangelo A M, Francia E, Mar C, Tondelli A,Stanca A M. Drought tolerance improvement in cropplants:An integrated view from breeding to genomics[J]. Field Crops Research,2008,105(1/2):1-14.doi:10. 1016/j. fcr. 2007. 07. 004.
    [54] Abou-Elwafa S F. Identification of genes associated withdrought tolerance in barley[J]. Biologia Plantarum,2018,62(2):299-306. doi:10. 1007/s10535-017-0765-0.
    [55] Mir R R,Zaman-Allah M,Sreenivasulu N,TrethowanR,Varshney R K. Integrated genomics,physiology andbreeding approaches for improving drought tolerance incrops[J]. Theoretical and Applied Genetics,2012,125(4):625-645. doi:org/10.1007/s00122-012-1904-9.
    [56] Tubersora R,Salvi S. Genomics-based approaches to im-prove drought tolerance of crops[J]. Trends in Plant Sci-ence,2006,11(8):405-412. doi:org/10. 1016/j. tpla-nts. 2006. 06. 003.
    [57] Lu G H,Wang X P,Liu J H,Yu K,Gao Y,Liu H Y,Wang C G,Wang W,Wang G A,Mao G F,Li B F,Qin J Y,Xia M,Zhou J L,Liu J M,Jiang S Q,Mo HA,Nagasawa N,Sivasankar S,Albertsen M C,SakaiH,Mazur B J,Lassner M W,Broglie R M. Applicationof T-DNA activation tagging to identify glutamate recep-tor-like genes that enhance drought tolerance in plants[J]. Plant Cell Reports,2014,33(4):617-631. doi:10. 1007/s00299-014-1586-7.
    [58] Casaretto J A,El-Kereamy A,Zeng B,Stiegelmeyer SM,Chen X,Yong M B,Rothstein S J. Expression ofOs MYB55 in maize activates stress-responsive genes andenhances heat and drought tolerance[J]. BMC Genom-ics,2016,17(1):312. doi:10. 1186/s12864-016-2659-5.
    [59] Webster H,Keeble G,Dell B,Fosu-Nyarko J,MukaiY,Moolhuijzen P,Bellgard M,Jia J Z,Kong X Y,Feuillet C,Choulet F,Appels R,Int wheat genome se-quencing consor. Genome-level identification of cell wallinvertase genes in wheat for the study of drought toler-ance[J]. Functional Plant Biology,2012,39(7):569-579. doi:10. 1071/FP12083.
    [60]段莹亮,白洁.硫氧还蛋白(Trx)及Trx80在免疫系统中的作用[J].免疫学杂志,2009,25(4):483-486. doi:10. 13431/j. cnki. immunol. j. 20090129.Duan Y L,Bai J. The role of thioredoxin(Trx)andTrx80 in the immune system[J]. Immunological Jour-nal,2009,25(4):483-486. doi:10. 13431/j. cnki.immunol. j. 20090129.
    [61] Cha J Y,Kim J Y,Jung I J,Kim M R,Alam S S,YunD J,Lee S Y,Kim M G,Kim W Y. NADPH-dependentthioredoxin reductase A(NTRA)confers elevated toler-ance to oxidative stress and drought[J]. Plant Physiolo-gy and Biochemistry,2014,80:184-191. doi:10.1016/j. plaphy. 2014. 04. 008.
    [62] Ozgur R,Uzilday B,Sekmen A H,Turkan I. Reactiveoxygen species regulation and antioxidant defence in hal-ophytes[J]. Functional Plant Biology,2013,40(8/9,SI):832-847. doi:10. 1071/FP12389.
    [63] Zhai C Z,Zhao L,Yin L J,Chen M,Wang Q Y,Li LC,Xu Z S,Ma Y Z. Two wheat glutathione peroxidasegenes whose products are located in chloroplasts improvesalt and H2O2tolerances in Arabidopsis[J]. PLo S One,2013,8(10):e73989. doi:10. 1371/journal. pone.0073989.
    [64]张帆,蒋雷,鞠丽萍,金秀锋,王轩,张晓科,王宏礼,付晓洁.一个普通小麦Trx超家族新基因Ta NRX的克隆与抗旱相关标记开发[J].作物学报,2014,40(1):29-36. doi:10. 3724/SP. J. 1006. 2014.00029.Zhang F,Jiang L,Ju L P,Jin X F,Wang X,Zhang XK,Wang H L,Fu X J. Cloning a novel gene Ta NRX ofTrx superfamily and developing its molecular markers re-lated to drought resistance in common wheat[J]. ActaAgronomica Sinica,2014,40(1):29-36. doi:10.3724/SP. J. 1006. 2014. 00029.
    [65]张鹏钰,袁珍,王国瑞,王同朝,尹钧,卫丽,刘毓侠.普通小麦Trx59基因的克隆及功能验证[J].华北农学报,2017,32(5):1-6. doi:10. 7668/hbnxb.2017. 05. 001.Zhang P Y,Yuan Z,Wang G R,Wang T C,Yin J,Wei L,Liu Y X. Cloning and functional verification ofTrx59 gene in common wheat[J]. Acta Agriculturae Bo-reali-Sinica,2017,32(5):1-6. doi:10. 7668/hbnxb.2017. 05. 001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700