模拟SO_4~(2-)沉降对闽江河口潮汐淡水湿地温室气体排放通量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Simulated SO_4~(2-) Deposition on the Greenhouse Gas Fluxes in a Freshwater Tidal Marsh in Minjiang River Estuary
  • 作者:程寅瑞 ; 仝川 ; 黄佳芳 ; 刘小慧 ; 饶清华
  • 英文作者:CHENG Yinrui;TONG Chuan;HUANG Jiafang;LIU Xiaohui;RAO Qinghua;School of Geographical Sciences,Fujian Normal University;Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education,Fujian Normal University;
  • 关键词:闽江河口 ; 潮汐淡水湿地 ; SO42-添加 ; 温室气体通量 ; 温室效应
  • 英文关键词:Minjiang River Estuary;;freshwater tidal marsh;;SO42- application;;greenhouse gas fluxes;;greenhouse effect
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:福建师范大学地理科学学院;福建师范大学湿润亚热带生态地理过程教育部重点实验室;
  • 出版日期:2018-07-25 15:05
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.253
  • 基金:国家自然科学基金项目(No.41371127);; 福建省基本科研专项重点项目(No.2014R1034-1)~~
  • 语种:中文;
  • 页:HJKX201902015
  • 页数:8
  • CN:02
  • ISSN:11-1827/X
  • 分类号:117-124
摘要
为了探究SO_4~(2-)沉降对潮汐淡水湿地温室气体排放通量的影响,在闽江河口短叶茳芏(Cyperus malaccensis)潮汐淡水湿地模拟SO_4~(2-)沉降,采用静态箱法测定样地环境因子与3种温室气体(CH_4、CO_2、N_2O)通量随SO_4~(2-)添加量和不同月份的变化,采用多元逐步回归分析影响温室气体通量的关键因子.结果表明:(1)各环境因子和3种温室气体通量均具有显著的月际变化.(2)添加SO_4~(2-)显著增加了短叶茳芏种群密度和间隙水ρ(SO_4~(2-))、ρ(NH_4~+-N),但对其他环境因子无显著影响.(3)添加SO_4~(2-)显著抑制了CH_4排放,当SO_4~(2-)添加量(以SO_4~(2-)-S计,下同)为40和120 kg/(hm~2·a)时,CH_4通量分别减少了33.8%、69.9%;CO_2和N_2O通量随SO_4~(2-)添加量的变化不显著,但分别趋于减小和增加,其中,SO_4~(2-)添加量为40和120 kg/(hm~2·a)时,CO_2通量分别减少了5.2%、11.8%,N_2O通量则分别增加了98.0%、103.0%.(4)相关分析和多元逐步回归分析结果显示,沉积物温度及间隙水ρ(SO_4~(2-))、ρ(NH_4~+-N)、ρ(NO_x~--N)(NO_x~--N主要包括NO_3~--N和NO_2~--N)是影响样地3种湿地温室气体排放通量的关键因子.(5)当SO_4~(2-)添加量为40和120 kg/(hm~2·a)时,3种温室气体排放产生的综合温室效应呈减小趋势,分别降低了5.5%和13.5%.研究推断,SO_4~(2-)沉降速率的升高有助于缓解潮汐淡水湿地对全球气候变暖的贡献.
        In order to investigate the effect of SO_4~(2-)deposition on the greenhouse gas emissions from freshwater tidal marsh,simulated SO_4~(2-)deposition was carried out in a Cyperus malaccensis freshwater tidal marsh in Minjiang River Estuary.The enclosed static chamber technique was used to determine the environmental factors and the greenhouse gas fluxes(included CH_4,CO_2and N_2O)in different months and under different SO_4~(2-)application rates.The stepwise regression was performed to determine the influential environmental factors to the greenhouse gas fluxes.The results showed that the environmental factors and the greenhouse gas fluxes in the plots exhibited distinct monthly variations.The additional sulfate concentration significantly promoted the plant density,andρ(SO_4~(2-))andρ(NH_4~+-N)in pore water.The additional sulfate significantly suppressed the CH_4flux;the CH_4flux decreased by 33.8%and 69.9%,respectively,when the SO_4~(2-)application rate(by SO_4~(2-)-S)reached 40 and 120 kg/(hm~2·a).The CO_2flux decreased with increasing SO_4~(2-)while the N_2O flux increased,though the changes were not significant;the CO_2flux decreased by 5.2%and 11.8%,respectively,while the N_2O flux increased by 98.0%and 103.0%,respectively,due to 40 and 120 kg/(hm~2·a)SO_4~(2-)applications.Sediment temperature,andρ(SO_4~(2-)),ρ(NH_4~+-N)andρ(NO_x~--N)(included NO_3~--N and NO_2~--N)in pore water were the influential factors to the greenhouse gas fluxes.The overall greenhouse effect from the emissions of the 3 greenhouse gases decreased with the application of 40 and 120kg/(hm~2·a)SO_4~(2-);the reduction was 5.5%and 13.5%,respectively.Our research concluded that the increase in sulfate deposition rate might be conducive to the reduction of the contribution of tidal marsh to the global warming.
引文
[1] IPCC. Climate change 2013:the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press,2014:52,714.
    [2]胡智强.闽江河口沼泽湿地3种温室气体通量日进程特征[D].福州:福建师范大学,2011.
    [3]张永勋.闽江河口短叶茳芏湿地N2O排放通量特征及影响因素分析[D].福州:福建师范大学,2013.
    [4] DENTENER F,DREVET J,LAMARQUE J F,et al. Nitrogen and sulfur deposition on regional and global scales:a multimodel evaluation[J]. Global Biogeochemical Cycles,2006. doi:10. 1029/2005GB002672.
    [5] RODHE H.Human impact on the atmospheric sulfur balance[J].Tellus A:Dynamic Meteorology and Oceanography,1999,51:110-122.
    [6] GAUCI V,DISE N,FOWLER D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition[J].Global Biogeochemical Cycles,2002. doi:10.1029/2000GB001370.
    [7]仝川,柳铮铮,曾从盛,等.模拟SO42-沉降对河口潮汐湿地甲烷排放通量的影响[J].中国环境科学,2010,30(3):32-38.TONG Chuan,LIU Zhengzheng,ZENG Congsheng,et al. Effects of simulated sulfate deposition on CH4fluxes from tidal wetland in the Min River Estuary[J]. China Environmental Science,2010,30(3):302-308.
    [8] CAI Zucong,ZHANG Jinbo,ZHU Tongbin,et al.Stimulation of NO and N2O emissions from soils by SO2deposition[J].Global Change Biology,2012,18:2280-2291.
    [9] LOZANOVSKA I,KUZYAKOV Y,KROHN J,et al. Effects of nitrate and sulfate on greenhouse gas emission potentials from microform-derived peats of a boreal peatland:a13C tracer study[J].Soil Biology&Biochemistry,2016,100:182-191.
    [10] HU Minjie,WILSON B J,SUN Zhigao,et al.Effects of the addition on of nitrogen and sulfate on CH4and CO2emissions,soil,and pore water chemistry in a high marsh of the Min River Estuary in southeastern China[J]. Science of the Total Environment,2017,579:292-304.
    [11] TONG Chuan,WANG Weiqi,HUANG Jiafang,et al.Invasive alien plants increase CH4emissions from a subtropical tidal estuarine wetland[J].Biogeochemistry,2012,111:677-693.
    [12] SONG Changchun,XU Xiaofeng,TIAN Hanqin,et al. Ecosystematmosphere exchange of CH4and N2O and ecosystem respiration in wetlands in the Sanjiang Plain,northeastern China[J]. Global Change Biology,2009,15:692-705.
    [13] SALVAGIOTTI F,CASTELLARIN J M,MIRALLES D J,et al.Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake[J]. Field Crops Research,2009,113:170-177.
    [14] BRUNET R C,GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J].FEMS Microbiology Ecology,1996,21:131-138.
    [15] YIN Zhixuan,XIE Li,ZHOU Qi.Effects of sulfide on the integration of denitrification with anaerobic digestion[J].Journal of Bioscience and Bioengineering,2015,120(4):426-431.
    [16] OMAR S A,ISMAIL M A. Microbial populations,ammonification and nitrification in soil treated with urea and inorganic salts[J].Folia Microbiologica,1999,44(2):205-212.
    [17] KEMMITT S J,WRIGHT D,JONES D L.Soil acidification used as a management strategy to reduce nitrate losses from agricultural land[J].Soil Biology&Biochemistry,2005,37:867-875.
    [18] CAMPBELL R B,BOWER C A,RICHARDS L A. Change of electrical conductivity with temperature and the relation of osmotic pressure to electrical conductivity and ion concentration for soil extracts[J].Soil Science Society of America Journal,1949,13:66-69.
    [19] CAO Linkui,CHEN Guojun,LU Yitong. Nitrogen leaching in vegetable fields in the suburbs of Shanghai[J]. Pedosphere,2005,15(5):641-645.
    [20] GAO Haifeng,BAI Junhong,HE Xinhua,et al. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh[J].Plos One,2014,9(4):e95011.
    [21] SEGERS R.Methane production and methane consumption:a review of processes underlying wetland methane fluxes[J].Biogeochemistry,1998,41:23-51.
    [22] CAO Mingkui,DENT J B,HEAL O W. Modelling methane emissions from rice paddies[J]. Global Biogeochemical Cycles,1995,9(2):183-195.
    [23] YAVITT J B,KNAPP A K.Aspects of methane flow from sediment through emergent cattail(Typha latifolia)plants[J]. New Phytologist,1998,139:495-503.
    [24] XU Xinwanghao,ZOU Xinqing,CAO Liguo,et al. Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China[J].Ecological Engineering,2014,73:469-477.
    [25] GOLOVATSKAYA E A,DYUKAREV E A. Seasonal and diurnal dynamics of CO2emission from oligotrophic peat soil surface[J].Russian Meteorology and Hydrology,2011,36(6):413-419.
    [26] SINGH R K,DUTTA R K,AGRAWAL M.Litter decomposition and nutrient release in relation to atmospheric deposition of S and N in a dry tropical region[J].Pedobiologia,2004,48:305-311.
    [27] CURREY P M,JOHNSON D,DAWSON L A,et al. Five years of simulated atmospheric nitrogen deposition have only subtle effects on the fate of newly synthesized carbon in Calluna vugaris and Eriophorum vaginatum[J]. Soil Biology and Biochemistry,2011,43:495-502.
    [28] WANG Dongqi,CHEN Zhenlou,XU Shiyuan,et al. Denitrification in tidal flat sediment,Yangtze Estuary[J].Science in China Series B:Chemistry,2007,50(6):812-820.
    [29] VERAART A J,DE KLEIN J J M,SCHEFFER M. Warming can boost denitrification disproportionately due to altered oxygen dynamics[J].Plos One,2011,6(3):e18508.
    [30] ZHU Xia,BURGER M,DOANE T A,et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability[J]. PNAS,2013,110(16):6328-6333.
    [31] DISE N B,VERRY E S.Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain[J].Biogeochemistry,2001,53:143-160.
    [32] VILE M A,BRIDGHAM S D,WIEDER R K.Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland[J].Ecological Applications,2003,13(3):720-734.
    [33] HASEGAWA K,HANAKI K,MATSUO T,et al.Nitrous oxide from the agricultural water system contaminated with high nitrogen[J].Chemosphere-Global Change Science,2000,2:335-345.
    [34] GAO Yongheng,CHEN Huai,ZENG Xiaoyang. Effects of nitrogen and sulfur deposition on CH4and N2O fluxes in high-altitude peatland soil under different water tables in the Tibetan Plateau[J].Soil Science and Plant Nutrition,2014,60:404-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700