Ultracompact fiber laser based on a highly integrated optical device
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultracompact fiber laser based on a highly integrated optical device
  • 作者:XIAOXIANG ; HAN ; XUEMING ; LIU
  • 英文作者:XIAOXIANG HAN;XUEMING LIU;State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University;
  • 出版日期:2019-01-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Natural Science Foundation of China(NSFC)(61525505,11774310,61805212);; China Postdoctoral Science Foundation(2017M621918);; Key Scientific and Technological Innovation Team Project in Shaanxi Province(2015KCT-06)
  • 语种:英文;
  • 页:GZXJ201901006
  • 页数:6
  • CN:01
  • ISSN:31-2126/O4
  • 分类号:40-45
摘要
The ultrafast fiber laser has attracted a great deal of research interest due to its low cost, high efficiency, and simple maintenance. Optical passive devices are vital parts of a fiber laser. In order to obtain a fiber laser with high quality, optical passive devices with high performance are required. Here, we demonstrate a highly integrated optical device with the combination of a saturable absorber(SA), coupler, isolator, wavelength division multiplexer, and erbium-doped fiber. The built-in SA has a modulation depth of 7% and can withstand high pump power due to the unique structure of the proposed device. The proposed device is applied to an ultracompact fiber laser, which greatly simplifies the laser structure and reduces the size of the proposed laser. The central wavelength, pulse duration, repetition rate, and signal-to-noise ratio of the output soliton are 1560 nm, 1.06 ps,25.8 MHz, and 50 dB, respectively. The proposed device has great potential for application in high-power and high-frequency fiber lasers. The proposed ultracompact fiber laser has important applications in optical communication, optical sensing, optical frequency combs, and micromachining.
        The ultrafast fiber laser has attracted a great deal of research interest due to its low cost, high efficiency, and simple maintenance. Optical passive devices are vital parts of a fiber laser. In order to obtain a fiber laser with high quality, optical passive devices with high performance are required. Here, we demonstrate a highly integrated optical device with the combination of a saturable absorber(SA), coupler, isolator, wavelength division multiplexer, and erbium-doped fiber. The built-in SA has a modulation depth of 7% and can withstand high pump power due to the unique structure of the proposed device. The proposed device is applied to an ultracompact fiber laser, which greatly simplifies the laser structure and reduces the size of the proposed laser. The central wavelength, pulse duration, repetition rate, and signal-to-noise ratio of the output soliton are 1560 nm, 1.06 ps,25.8 MHz, and 50 dB, respectively. The proposed device has great potential for application in high-power and high-frequency fiber lasers. The proposed ultracompact fiber laser has important applications in optical communication, optical sensing, optical frequency combs, and micromachining.
引文
1.G.Krauss,S.Lohss,T.Hanke,A.Sell,S.Eggert,R.Huber,and A.Leitenstorfer,“Synthesis of a single cycle of light with compact erbiumdoped fibre technology,”Nat.Photonics 4,33-36(2010).
    2.M.E.Fermann and I.Hartl,“Ultrafast fiber laser technology,”IEEE J.Sel.Top.Quantum Electron.15,191-206(2009).
    3.G.P.Agrawal,Applications of Nonlinear Fiber Optics(Academic,2010).
    4.X.Liu,X.Yao,and Y.Cui,“Real-time observation of the buildup of soliton molecules,”Phys.Rev.Lett.121,023905(2018).
    5.F.Chen and J.V.de Aldana,“Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,”Laser Photon.Rev.8,251-275(2014).
    6.T.Eidam,S.Hanf,E.Seise,T.Andersen,T.Gabler,C.Wirth,T.Schreiber,J.Limpert,and A.Tünnermann,“Femtosecond fiber CPA system emitting 830 W average output power,”Opt.Lett.35,94-96(2010).
    7.B.Oktem,C.Ulgudur,and F.Ilday,“Soliton-similariton fibre laser,”Nat.Photonics 4,307-311(2010).
    8.X.Liu and Y.Cui,“Flexible pulse-controlled fiber laser,”Sci.Rep.5,9399(2015).
    9.Z.Qiao,L.C.Kong,G.Q.Xie,Z.P.Qin,P.Yuan,L.J.Qian,X.D.Xu,J.Xu,and D.Y.Fan,“Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,”Opt.Lett.42,2547-2550(2017).
    10.F.W.Wise,A.Chong,and W.H.Renninger,“High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,”Laser Photon.Rev.2,58-73(2008).
    11.X.Liu,“Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,”Phys.Rev.A 82,053808(2010).
    12.N.Nyushkov,V.Ivanenko,S.M.Kobtsev,K.Turitsyn,C.Mou,L.Zhang,V.I.Denisov,and V.S.Pivtsov,“Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,”Laser Phys.Lett.9,59-67(2012).
    13.Y.Cui,F.Lu,and X.Liu,“Nonlinear saturable and polarizationinduced absorption of rhenium disulfide,”Sci.Rep.7,40080(2017).
    14.N.Ansari and Y.Luo,Passive Optical Device:Computer Science and Communications Dictionary(Springer,2011),p.1235.
    15.P.Sah and B.K.Das,“Integrated optical rectangular-edge filter devices in SOI,”IEEE J.Lightwave Technol.35,128-135(2017).
    16.S.Li and D.Gao,“Integrated optical device design based on transformation optics,”in Progress in Electromagnetic Research Symposium(2016),p.16.
    17.Y.Zhou,A.Wang,C.Gu,B.Sun,L.Xu,F.Li,D.Chung,and Q.Zhan,“Actively mode-locked all fiber laser with cylindrical vector beam output,”Opt.Lett.41,548-550(2016).
    18.J.B.Schr?der,S.Coen,T.Sylvestre,and B.J.Eggleton,“Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper,”Opt.Express 18,22715-22721(2010).
    19.S.Kobtsev,S.Kukarin,S.Smirnov,S.Turitsyn,and A.Latkin,“Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,”Opt.Express 17,20707-20713(2009).
    20.H.Q.Lam,P.Shum,Y.D.Gong,and S.Fu,“Series analysis of active mode-locked laser under the influence of ASE noise,”J.Lightwave Technol.26,1671-1680(2008).
    21.X.Liu,“Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,”Phys.Rev.A 81,023811(2010).
    22.X.Liu,Y.Cui,D.Han,X.Yao,and Z.Sun,“Distributed ultrafast fibre laser,”Sci.Rep.5,9101(2015).
    23.L.M.Zhao,A.C.Bartnik,Q.Q.Tai,and F.W.Wise,“Generation of8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror,”Opt.Lett.38,1942-1944(2013).
    24.X.Wang,P.Zhou,X.Wang,H.Xiao,and Z.Liu,“Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,”Opt.Express 22,6147-6153(2014).
    25.L.J.Kong,L.M.Zhao,S.Lefrancois,D.G.Ouzounov,C.X.Yang,and F.W.Wise,“Generation of megawatt peak power picoseconds pulses from a divided-pulse fiber amplifier,”Opt.Lett.37,253-255(2012).
    26.W.Wang,H.Meng,X.Wu,W.Wang,R.Xiong,H.Xue,C.Tan,and X.Huang,“A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,”Laser Phys.Lett.10,015104(2013).
    27.C.Ouyang,P.Shum,K.Wu,J.Wong,H.Lam,and S.Aditya,“Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,”Opt.Lett.36,2089-2091(2011).
    28.Y.W.Song,S.Yamashita,and S.Maruyama,“Single-walled carbon nanotubes for high-energy optical pulse formation,”Appl.Phys.Lett.92,021115(2008).
    29.F.Bonaccorso,Z.Sun,T.Hasan,and A.Ferrari,“Graphene photonics and optoelectronics,”Nat.Photonics 4,611-622(2010).
    30.Z.P.Qin,G.Q.Xie,C.J.Zhao,S.C.Wen,P.Yuan,and L.J.Qian,“Mid-infrared mode-locking pulse generation with multilayer black phosphorus as saturable absorber,”Opt.Lett.41,56-59(2016).
    31.J.H.Im,S.Choi,F.Rotermund,and D.Yeom,“All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,”Opt.Express 18,22141-22146(2010).
    32.P.Yan,R.Lin,S.Ruan,A.Liu,and H.Chen,“A 2.95 GHz,femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,”Opt.Express 23,154-164(2015).
    33.M.Schumann,T.Bückmann,N.Gruhler,M.Wegener,and W.Pernice,“Hybrid 2D-3D optical devices for integrated optics by direct laser writing,”Light Sci.Appl.3,e175(2014).
    34.X.Liu,D.Han,Z.Sun,C.Zeng,H.Lu,D.Mao,Y.Cui,and F.Wang,“Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,”Sci.Rep.3,2718(2013).
    35.Y.Fan,X.Roux,A.Korovin,A.Lupu,and A.Lustrac,“Integrated2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,”ACS Nano 11,4599-4605(2017).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700