热处理对Cu-0.6Cr-0.15Zr-0.12Fe-0.06P合金组织和性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of heat treatment on microstructure and properties of Cu-0. 6Cr-0. 15Zr-0. 12Fe-0. 06P alloy
  • 作者:周清泉 ; 帅歌旺 ; 周平建
  • 英文作者:Zhou Qingquan;Shuai Gewang;Zhou Pingjian;School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University;
  • 关键词:Cu-0.6Cr-0.15Zr-0.12Fe-0.06P合金 ; 固溶处理 ; 时效
  • 英文关键词:Cu-0.6Cr-0.15Zr-0.12Fe-0.06P alloy;;solution treatment;;aging
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:南昌航空大学航空制造工程学院;
  • 出版日期:2017-11-25
  • 出版单位:金属热处理
  • 年:2017
  • 期:v.42;No.483
  • 基金:国家自然科学基金(51305193)
  • 语种:中文;
  • 页:JSRC201711029
  • 页数:6
  • CN:11
  • ISSN:11-1860/TG
  • 分类号:133-138
摘要
采用金相显微镜、扫描电镜、X射线衍射仪、能谱分析仪、导电仪和硬度计,研究了不同热处理工艺对Cu-0.6Cr-0.15Zr-0.12Fe-0.06P合金组织和性能的影响。结果表明:固溶处理后合金电导率、硬度均有所下降;时效处理后,合金电导率快速上升;硬度随时效时间的延长,先升后降;时效温度提高,达到时效硬化峰值的时间就越短,电导率上升的也越快。合金经980℃×2 h+500℃×3 h处理后,电导率可达44.2 MS·m~(-1),硬度可达154.76 HV0.2,软化温度达到603℃。合金析出相主要成分是以Cr为主的(Cr Zr Fe P)化合物和(Cr Zr P)化合物。试验对比了980℃×2 h固溶后时效和未经固溶直接时效两种工艺,发现合金电导率相差不大,但经过固溶处理后合金析出相颗粒分布更均匀,硬度峰值升高18 HV0.2。
        Influence of different heat treatment processes on the microstructure and properties of Cu-0. 6 Cr-0. 15 Zr-0. 12 Fe-0. 06 P alloy were studied by using optical microscope,X-ray diffractometer,scanning electron microscopy,energy dispersive spectrometer,conductometer and hardness tester. The results show that the conductivity and hardness of the alloy decrease after solid solution treatment,the conductivity increases rapidly after aging,and the hardness first increases and then decreases with the aging time; As the aging temperature increases,the time to reach the peak hardening is shorter,and the electric conductivity increases quickly. After the optimum aging treatment of 500 ℃ × 3 h following a 980 ℃ × 2 h solution treatment,the electrical conductivity of the alloy is 44. 2 MS·m~(-1),the hardness is up to 154. 76 HV0. 2,the softening temperature reached 686 ℃. The precipitated phases are chromium-rich( Cr Zr Fe P) and( Cr Zr P) compounds. In the experiment,two kinds of aging processes with and without 980 ℃ × 2 h solution treatment were compared. The results show that the conductivity of the alloy is almost the same,but the precipitate particle distribution after solution treatment is more uniform,and the hardness is increased by 18 HV0. 2 than that of the alloy directly aged.
引文
[1]Yeung K S,Thornton P H.Transient thermal analysis of spot welding electrodes[J].Welding Journal,1999,78(1):1-6.
    [2]Matsumoto J,Mochizuki H.Spot welding of aluminum alloy electrode life for variou-s electrodes[J].Welding International,1994,8(6):438-442.
    [3]Lai X M,Luo A H,Zhang Y S,et al.Optimal design of electrode cooling system for resistance spot-welding with the response surface method[J].Adv Manuf Technol,2009,41:226-233.
    [4]候东健,武磊,高大伟,等.镁硅复合微合金化对高强高导铜铬锆合金时效过程的影响[J].金属热处理,2016,41(10):102-107.Hou Dongjian,Wu Lei,Gao Dawei,et al.Effect of magnesium silicon composite microalloying on high strength and high conductivity Cu-Cr-Zr alloy aging process[J].Heat Treatment of Metals,2016,41(10):102-107.
    [5]帅歌旺,方平,郭正华,等.镀锌钢板电阻点焊电极的失效分析[J].热加工工艺,2009,38(13):122-124.Shuai Gewang,Fang Ping,Guo Zhenghua,et al.Analysis on electrode failure during resistance spot welding of zinc coated steel[J].Hot Working Technology,2009,38(13):122-124.
    [6]帅歌旺,周平建,刘建彬.电阻点焊电极的研究进展与发展趋势[J].材料导报,2015,29(4):59-62.Shuai Gewang,Zhou Pingjian,Liu Jianbin.Research progress and trends in resistance spot welding electrode[J].Materials Review,2015,29(4):59-62.
    [7]Yeung K S,Thornton P H.Transient thermal analysis of spot welding electrodes[J].Weld J,1999,78(1):1-6.
    [8]Matsumoto J,Mochizuki H.Spot welding of aluminum alloy electrode life for various electrodes[J].Weld Int,1994,8(6):438-444.
    [9]涂芳,何柏林.点焊电极强化工艺的研究进展[J].机械工程材料,2005(1):23-26.Tu Fang,He Bolin.Progress of the strengthening methods of spot welding electrodes[J].Materials for Mechanical Engineering,2005(1):23-26.
    [10]潘志勇,汪明朴,李周,等.添加微量元素对Cu-Ni-Si合金性能的影响[J].材料导报,2007,21(5):86-89.Pan Zhiyong,Wang Mingpu,Li Zhou,et al.Effect of trace elements on properties of Cu-Ni-Si alloy[J].Materials Review,2007,21(5):86-89.
    [11]李鹏,湛金,殷石阳.深冷处理对镍钴铜合金组织和性能的影响[J].金属热处理,2015,40(8):173-175.Li Peng,Zhan Jin,Yin Shiyang.Effect of cryogenic treatment on microstructure and mechanical properties of Ni-Co-Cu alloy[J].Heat Treatment of Metals,2015,40(8):173-175.
    [12]钟建伟.Cu-1.0Cr-0.2Zr-0.03Fe合金显微组织与性能的研究[D].长沙:中南大学,2009.
    [13]周清泉,帅歌旺,刘建彬.热处理对Cu-Cr-Zr-Ni-Si-B合金组织与性能的影响[J].金属热处理,2016,41(9):139-142.Zhou Qingquan,Shuai Gewang,Liu Jianbin.Effect of heat treatment on microstructure and properties of Cu-Cr-Zr-Ni-Si-B alloy[J].Heat Treatment of Metals,2016,41(9):139-142.
    [14]杨春秀,郭富安,向朝建,等.时效态Cu-Fe-P合金组织和性能的研究[J].特种铸造及有色合金,2007(12):975-978.Yang Chunxiu,Guo Fuan,Xiang Chaojian,et al.Microstructure and properties of aging Cu-Fe-P alloy[J].Special-cast and Non-ferrous Alloys,2007(12):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700