热变形温度对Cu-Sn-P合金微观组织的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of thermal deformation temperature on microstructure of Cu-Sn-P alloy
  • 作者:张盼盼 ; 张城瑞
  • 英文作者:Zhang Panpan;Zhang Chengrui;School of Mechanical Engineering,North University of China;
  • 关键词:Cu-Sn-P合金 ; 热变形 ; 组织演变
  • 英文关键词:Cu-Sn-P alloy;;thermal deformation;;microstructure evolution
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:中北大学机械工程学院;
  • 出版日期:2019-03-25
  • 出版单位:金属热处理
  • 年:2019
  • 期:v.44;No.499
  • 基金:国家自然科学基金(51604246)
  • 语种:中文;
  • 页:JSRC201903042
  • 页数:4
  • CN:03
  • ISSN:11-1860/TG
  • 分类号:174-177
摘要
通过EBSD,TEM等方法对Cu-Sn-P在合金200~500℃的热变形组织进行分析。研究表明:经热变形后的晶粒组织垂直于受力方向被拉长,大部分为变形晶粒,应变硬化效果明显,基体内部存在较大的形变储能。再结晶主要在位错密度较大区域形核,软化作用比较微弱。热变形组织内部亚晶组织及位错聚集区密集分布,发现了刃型位错的交割以及位错列的滑移作用。当变形温度为500℃时,在再结晶晶粒内部会出现台阶状的退火孪晶。
        Hot deformation microstructure of Cu-Sn-P alloy at 200-500 ℃ was analyzed by means of EBSD and TEM. The results show that the grains are elongated after hot deformation,perpendicular to the loading direction. Besides,the strain hardening effect is apparent,and the deformation energy storage of matrix increased. The recrystallization mainly nucleates at the position of high dislocation density,which weakens the softening effect. Sub-crystalline microstructure and dislocation accumulation area are densely distributed in the thermal deformation microstructure. When the deformation temperature is 500 ℃,step-like annealing twins can be observed in the recrystallization grain.
引文
[1]Hui J,Feng Z X,Xue C,et al.Effects of hot compression on distribution ofΣ3nboundary and mechanical properties in Cu-Sn alloy[J].Journal of Materials Science,2018,53(21):15308-15318.
    [2]Yin Z Z,Sun F L,Guo M J.The fast formation of Cu-Sn intermetallic compound in Cu/Sn/Cu system by induction heating process[J].Materials Letters,2018,215:207-210.
    [3]Hui J,Feng Z X,Fan W X,et al.The influence of power spinning and annealing temperature on microstructures and properties of Cu-Sn alloy[J].Materials Characterization,2018,144:611-620.
    [4]Tavakoli A,Liu R.Improved mechanical and tribological properties of tinbronze journal bearing materials with newly developed tribaloy alloy additive[J].Materials Science and Engineering:A,2008,489(1/2):389-402.
    [5]Robert E V C,Gunder R,Wild J D,et al.Synthesis,theoretical and experimental characterisation of thin film Cu2Sn1-xGexS3,ternary alloys(x=0 to 1):Homogeneous intermixing of Sn and Ge[J].Acta Materialia,2018(151):125-136.
    [6]Liang C L,Lin K L.The amorphous interphase formed in an intermetallic-free Cu/Sn couple during early stage electromigration[J].Scripta Materialia,2018,155:58-62.
    [7]Somidin F,Maeno H,Mohd Salleh M A A.Characterising the polymorphic phase transformation at a localised point on a Cu6Sn5grain[J].Materials Characterization,2018,138:113-119.
    [8]Gholinia A,Brough I,John F H,et al.A 3D EBSD investigation of dynamic recrystallisation in a Cu-Sn bronze[J].Materials Science Forum,2012,15(s2):498-501.
    [9]Darling K A,Rajagopalan M,Komarasamy M,et al.Extreme creep resistance in a microstructurally stable nanocrystalline alloy[J].Nature,2016,537(7620):378-381.
    [10]Kim S H,Kim H,Kim N J.Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J].Nature,2015,518(7537):790-784
    [11]Demkowicz M J,Anderoglu O,Zhang X H,et al.The influence of∑3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu[J].Journal of Materials Research,2011,26(14):1666-1675.
    [12]Dash S,Brown N.An investigation of the origin and growth of annealing twins[J].Acta Metallurgica,1963,11(9):1067-1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700