(准)共晶系相变储能材料的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in studies of(quasi-)eutectic phase change energy storage materials
  • 作者:陈涛 ; 孙寒雪 ; 朱照琪 ; 李安
  • 英文作者:CHEN Tao;SUN Hanxue;ZHU Zhaoqi;LI An;College of Petrochemical Technology,Lanzhou University of Technology;
  • 关键词:共晶 ; 相变 ; 相变材料 ; 复合材料 ; 理论设计 ; 储能
  • 英文关键词:eutectic;;phase change;;phase change materials(PCMs);;composites;;theoretical design;;energy storage
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:兰州理工大学石油化工学院;
  • 出版日期:2019-07-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:国家自然科学基金(51663012,51462021);; 甘肃省自然科学基金(1610RJYA001)
  • 语种:中文;
  • 页:HGJZ201907026
  • 页数:9
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:258-266
摘要
节能技术的发展是当今非常现实的问题,这些技术的发展方向之一是各行业的热能储存。相变储能材料由于其较大的潜热和恒温性,被广泛应用于潜热储能系统和热管理系统中。然而,单一相变材料的相变温度和潜热比较固定,难以同时满足多种储能应用对各种潜热、相变温度等性质的要求。因此,人们开展了关于二元或多元共晶相变体系的研究。本文介绍了近年来国内外(准)共晶相变储能材料及其复合材料的研究进展,探讨了(准)共晶相变储能材料的理论设计机理,指出了(准)共晶相变储能材料存在的不同问题并提出建议,最后指出了(准)共晶系相变储能材料在实际应用领域的局限,提出未来在寻找新型相变储能材料,建立传热理论模型,对(准)共晶系复合相变储能材料的力学性能、耐老化性能、储能密度低和高温条件下的耐久性差等方面需要进一步探索。
        The development of energy-saving technology is a very practical problem nowadays. One of the development directions of these technologies is the storage of heat energy in various industries. Phase change materials(PCMs) are widely used in latent thermal energy storage system and thermal management system due to their large latent heat and constant temperature. However, the phase transition temperature and latent heat of a single phase change material are relatively fixed, and it is difficult to meet the requirements of various latent heat and phase transition temperatures for various energy storage applications. Therefore, people have carried out research on binary or multi-element eutectic phase transition systems. In this paper, the research progress of(quasi-)eutectic PCMs and their composites materials in recent years is introduced. The theoretical design mechanism of(quasi-)eutectic PCMs is discussed. The different problems existing in(quasi-)eutectic PCMs are pointed out, and corresponding strategies are put forward. Finally, the limitations of(quasi-)eutectic PCMs in practical applications are pointed out. In the future, it is necessary to further explore the search for new PCMs, the establishment of heat transfer theoretical models, the mechanical properties and aging resistance of(quasi-)eutectic phase change composites, and the low storage density and poor durability under high temperature conditions.
引文
[1] GARG H P, MULLICK S C, BHARGAVA A K. Solar thermal energy storage[M]. Netherlands, Dordrecht:Springer, 1985:154-291.
    [2] GHAIB K. Latent heat storage:storage materials, heat transfer, and applications[J]. Chemie Ingenieur Technik., 2017, 89(9):1115-1125.
    [3] KURAVI S, TRAHAN J, GOSWASI D Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J].Progress in Energy and Combustion Science, 2013, 39(4):285-319.
    [4]于永生,井强山,孙雅倩.低温相变储能材料研究进展[J].化工进展, 2010, 29(5):896-900.YU Yongsheng, JING Qiangshan, SUN Yaqian. Progress in studies of low temperature phase-change energy storage materials[J]. Chemical Industry and Engineering Progress, 2010, 29(5):896-900.
    [5]朱茂川,周国兵,杨霏,等.过冷水合盐相变材料跨季节储存太阳能研究进展[J].化工进展, 2018,37(6):2256-2268.ZHU Maochuan, ZHOU Guobing, YANG Fei, et al. Progress of seasonal solar energy storage using supercooled salt hydrate phase change materials[J]. Chemical Industry and Engineering Progress,2018,37(6):2256-2268.
    [6] SAN A. Eutectic mixtures of some fatty acids for low temperature solar heating applications:thermal properties and thermal reliability[J].Applied Thermal Engineering, 2005, 25(14/15):2100-2107.
    [7] ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials:fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016,165:472-510.
    [8] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345.
    [9] RATHOD M K, BANERJEEE J. Thermal stability of phase change materials used in latent heat energy storage systems:a review[J].Renewable and Sustainable Energy Reviews, 2013, 18:246-258.
    [10] MEHLING H, CABEZA L F. Heat and cold storage with PCM[M].Berlin:Springer, 2008:11-55.
    [11]张寅平,苏跃红,葛新石.(准)共晶系相变材料融点及融解热的理论预测[J].中国科学技术大学学报, 1995(4):474-478.ZHANG Yinping, SU Yuehong, GE Xinshi. Prediction of the melting temperature and the fusion heat of(Quasi-)eutectic PCM[J]. Journal of China University of Science and Technology, 1995(4):474-478.
    [12] DIARCE G, GANDARIAS I, CAMPOS-CELADOR A, et al. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90℃temperature range[J]. Solar Energy Materials&Solar Cells, 2015, 134(3):215-226.
    [13] RAMIREZ B M L G, GLORIEUX C, MARTINEZ E S M, et al. Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles[J]. Applied Thermal Engineering,2014, 62(3):838-844.
    [14] KUMAR R, VYAS S, DIXIT A. Fatty acids/1-dodecanol binary eutectic phase change materials for low temperature solar thermal applications:design, development and thermal analysis[J]. Solar Energy, 2017, 155:1373-1379.
    [15] KUMAR R, KUMAR R, DIXIT A. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications[C]//AIP Conference Proceedings. AIP Publishing, 2016, 1728(1):020687.
    [16] GE Z, HUANG Y, DING Y. Eutectic composition-dependence of latent heat of binary carbonates(Na2CO3/Li2CO3)[J]. Solar Energy Materials and Solar Cells, 2018, 179:202-206.
    [17] LIU M, BELL S, SEGARRA M, et al. A eutectic salt high temperature phase change material:thermal stability and corrosion of SS316 with respect to thermal cycling[J]. Solar Energy Materials and Solar Cells,2017, 170:1-7.
    [18] WANG Z, WANG H, YANG M, et al. Thermal reliability of Al-Si eutectic alloy for thermal energy storage[J]. Materials Research Bulletin, 2017, 95:300-306.
    [19]纪珺,陈跃,章学来,等.甘露醇水溶液低温储能相变材料的制备及热物性[J].化工进展, 2018, 37(3):1111-1117.JI Jun, CHEN Yue, ZHANG Xuelai, et al. Preparation and thermophysical properties of mannitol aqueous solution PCMs for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(3):1111-1117.
    [20] XIE S, SUN J, WANG Z, et al. A thermally stable phase change material with high latent heat based on an oxalic acid dihydrate/boric acid binary eutectic system[J]. Solar Energy Materials and Solar Cells,2017, 168:38-44.
    [21] DIARCE G, CORRO-MARTíNEZ E, QUANT L, et al. The sodium nitrate–urea binary mixture as a phase change material for medium temperature thermal energy storage. PartⅠ:Determination of the phase diagram and main thermal properties[J]. Solar Energy Materials and Solar Cells, 2016, 157:1065-1075.
    [22] DIARCE G, CORRO-MARTíNEZ E, CAMPOS-CELADORá, et al.The sodium nitrate–urea eutectic binary mixture as a phase change material for medium temperature thermal energy storage. PartⅡ:Accelerated thermal cycling test and water uptake behavior of the material[J]. Solar Energy Materials and Solar Cells, 2016, 157:1076-1083.
    [23] GUNASEKARA S N, CHIU J N W, MARTIN V, et al. The experimental phase diagram study of the binary polyols system erythritol-xylitol[J]. Solar Energy Materials and Solar Cells, 2018, 174:248-262.
    [24] ZENG J L, CHEN Y H, SHU L, et al. Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage[J].Solar Energy Materials and Solar Cells, 2018, 178:84-90.
    [25] VEERAKUMAR C, SREEKUMAR A. Preparation, thermophysical studies, and corrosion analysis of a stable capric acid/cetyl alcohol binary eutectic phase change material for cold thermal energy storage[J]. Energy Technology, 2018, 6(2):397-405.
    [26] HAN L, MA G, XIE S, et al. Thermal properties and stabilities of the eutectic mixture:1, 6-hexanediol/lauric acid as a phase change material for thermal energy storage[J]. Applied Thermal Engineering,2017, 116:153-159.
    [27] WANG Z, SUN J, XIE S, et al. Thermal properties and reliability of a lauric acid/nonanoic acid binary mixture as a phase‐change material for thermal energy storage[J]. Energy Technology, 2017, 5(12):2309-2316.
    [28] MA G, SUN J, XIE S, et al. Solid-liquid phase equilibria of stearic acid and dicarboxylic acids binary mixtures as low temperature thermal energy storage materials[J]. The Journal of Chemical Thermodynamics, 2018, 120:60-71.
    [29] TIAN H, DU L, WEI X, et al. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage[J]. Applied Energy, 2017, 204:525-530.
    [30] KE H. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Applied Thermal Engineering, 2017, 113:1319-1331.
    [31] GUNASEKARA S N, KUMOVA S, CHIU J N W, et al. Experimental phase diagram of the dodecane–tridecane system as phase change material in cold storage[J]. International Journal of Refrigeration, 2017,82:130-140.
    [32] DONG O, ZHANG Z, FU Z, et al. A novel composite phase-change material:CaCl2·6H2O+MgCl2·6H2O+NH4Cl[J]. Australian Journal of Chemistry, 2018, 71(6):416-421.
    [33] RISUE?O E, GIL A, RODRíGUEZ-ASEGUINOLAZA J, et al.Thermal cycling testing of Zn–Mg–Al eutectic metal alloys as potential high-temperature phase change materials for latent heat storage[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2):885-894.
    [34] SARI A, ALKAN C, BILGIN C. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate)shell:preparation, characterization and latent heat thermal energy storage properties[J]. Applied Energy, 2014, 136:217-227.
    [35] ALVA G, HUANG X, LIU L, et al. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage[J]. Applied Energy,2017, 203:677-685.
    [36] D??ü?CüD K, KIZIL?, BI?ER A, et al. Microencapsulated nalkane eutectics in polystyrene for solar thermal applications[J]. Solar Energy, 2018, 160:32-42.
    [37] REN Y X, XU C, YUAN M D, et al. Ca(NO3)(2)-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163:50-58.
    [38] ZHOU Y, SUN W, LING Z, et al. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt[J]. Industrial&Engineering Chemistry Research, 2017, 56(50):14799-14806.
    [39] LIU Y, YANG Y. Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite:the influence of chemical structures of expanded graphite oxide[J]. Renewable Energy, 2018, 115:734-740.
    [40] LIU S, HAN L, XIE S, et al. A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites[J]. Solar Energy, 2017, 143:22-30.
    [41] CHENG F, WEN R, ZHANG X, et al. Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage[J].Composites Part A:Applied Science and Manufacturing, 2018, 107:180-188.
    [42] WEI H, LI X. Preparation and characterization of a lauric-myristicstearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2017, 166:1-8.
    [43] WEN R, ZHANG X, HUANG Z, et al. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 178:273-279.
    [44] MENG X, ZHANG H, SUN L, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials[J]. Journal of thermal analysis and calorimetry, 2013, 111(1):377-384.
    [45] ZHANG N, YUAN Y, YUAN Y, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage[J]. Solar Energy, 2014, 110:64-70.
    [46] TANG Y, ALVA G, HUANG X, et al. Thermal properties and morphologies of MA-SA eutectics/CNTs as composite PCMs in thermal energy storage[J]. Energy and Buildings, 2016, 127:603-610.
    [47] AHMED S F, KHALID M, AMIN N, et al. Investigation of rheological and corrosion properties of graphene-based eutectic salt[J]. Journal of Materials Science, 2018, 53(1):692-707.
    [48] SINGH R P, KAUSHIK S C, RAKSHIT D. Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates[J]. Energy Conversion and Management, 2018, 171:825-838.
    [49] ATINAFU D G, DONG W, HUANG X, et al. Introduction of organicorganic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity[J]. Applied Energy,2018, 211:1203-1215.
    [50] LING Z, LIU J, WANG Q, et al. MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2composite phase change material with improved thermal reliability and enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2017, 172:195-201.
    [51] SU D, JIA Y, ALVA G, et al. Preparation and thermal properties of noctadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage[J]. Energy and Buildings, 2016, 131:35-41.
    [52] SARI A, BICER A, AL-AHMED A, et al. Silica fume/capric acidpalmitic acid composite phase change material doped with CNTs for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2018, 179:353-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700