Quantifying the effect of persistent dryer climates on forest productivity and implications for forest planning:a case study in northern Germany
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantifying the effect of persistent dryer climates on forest productivity and implications for forest planning:a case study in northern Germany
  • 作者:Matthias ; Albert ; Ralf-Volker ; Nagel ; Johannes ; Sutmller ; Matthias ; Schmidt
  • 英文作者:Matthias Albert;Ralf-Volker Nagel;Johannes Sutmller;Matthias Schmidt;Department of Forest Growth, Northwest German Forest Research Institute;Department of Environmental Control, Northwest German Forest Research Institute;
  • 英文关键词:Climate change;;Forest growth;;Forest productivity;;Persistent dryer climate;;simulation study;;Uncertainty
  • 中文刊名:BLDX
  • 英文刊名:森林生态系统(英文版)
  • 机构:Department of Forest Growth, Northwest German Forest Research Institute;Department of Environmental Control, Northwest German Forest Research Institute;
  • 出版日期:2018-12-15
  • 出版单位:Forest Ecosystems
  • 年:2018
  • 期:v.5
  • 基金:funded by the German Federal Ministry of Fducation and Research under research grant 033L029H and is part of the interdisciplinary research project"Sustainable land-use management in the North German lowlands"
  • 语种:英文;
  • 页:BLDX201804009
  • 页数:21
  • CN:04
  • ISSN:10-1166/S
  • 分类号:109-129
摘要
Background: Forest management decisions are based on expectations of future developments. For sound decisions it is essential to accurately predict the expected values in future developments and to account for their inherent uncertainty,for example the impact of climate change on forests. Changing climatic conditions affect forest produaivity and alter the risk profile of forests and forest enterprises. Intensifying drought stress is seen as one major risk factor threatening forest management in the north German lowlands. Drought stress reduces tree growth and vitality and might even trigger mortality. But so far, it is not possible to quantify effects of a persistent dryer climate on forest productivity at a level suitable for forest management.Methods: We apply a well-established single-tree forest growth simulator to quantify the effect of persistent dryer climates on future forest productivity. We analyse the growth of Scots pine(Pinus sylvestris L.); European beech {Fagus sylvotico L.) and oak {Quercus robur L. and Quercus petraeo(Matt.) Liebl.) in two forest regions in the north German lowlands for a time interval of 60 years until 2070. The growth response under three different climate projections is compared to a baseline scenario.Results: The results show clear differences in volume increment to persistent dryer climates between tree species. The findings exhibit regional differences and temporal trends. While mean annual increment at biological rotation age of Scots pine and oak predominantly benefits from the projected climate conditions until 2070, beech might suffer losses of up to 3 m3-ha '-yr 1 depending on climate scenario and region. However, in the projection period2051 to 2070 the uncertainty ranges comprise positive as well as negative climatic effects for all species.Conclusions: The projected changes in forest growth serve as quantitative contributions to provide decision support in the evaluation of, for example, species future site suitability and timber supply assessments. The analysis of productivity changes under persistent dryer climate complements the drought vulnerability assessment which is applied in practical forestry in northwestern Germany today. The projected species' productivity has strong implications for forest management and the inherent uncertainty needs to be accounted for.
        Background: Forest management decisions are based on expectations of future developments. For sound decisions it is essential to accurately predict the expected values in future developments and to account for their inherent uncertainty,for example the impact of climate change on forests. Changing climatic conditions affect forest productivity and alter the risk profile of forests and forest enterprises. Intensifying drought stress is seen as one major risk factor threatening forest management in the north German lowlands. Drought stress reduces tree growth and vitality and might even trigger mortality. But so far, it is not possible to quantify effects of a persistent dryer climate on forest productivity at a level suitable for forest management.Methods: We apply a well-established single-tree forest growth simulator to quantify the effect of persistent dryer climates on future forest productivity. We analyse the growth of Scots pine(Pinus sylvestris L.), European beech(Fagus sylvatico L.) and oak(Quercus robur L. and Quercus petraea(Matt.) Liebl.) in two forest regions in the north German lowlands for a time interval of 60 years until 2070. The growth response under three different climate projections is compared to a baseline scenario.Results: The results show clear differences in volume increment to persistent dryer climates between tree species. The findings exhibit regional differences and temporal trends. While mean annual increment at biological rotation age of Scots pine and oak predominantly benefits from the projected climate conditions until 2070, beech might suffer losses of up to 3 m~3·ha~(-1)yr~(-1) depending on climate scenario and region. However, in the projection period2051 to 2070 the uncertainty ranges comprise positive as well as negative climatic effects for all species.Conclusions: The projected changes in forest growth serve as quantitative contributions to provide decision support in the evaluation of, for example, species future site suitability and timber supply assessments. The analysis of productivity changes under persistent dryer climate complements the drought vulnerability assessment which is applied in practical forestry in northwestern Germany today. The projected species' productivity has strong implications for forest management and the inherent uncertainty needs to be accounted for.
引文
Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB. Troch PA, Huxman TE(2009)Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl Acad Sci U S A 106(17):7063-7066.https://doi.org/10.1073/pnas.0901438106
    Aertsen W, Janssen E, Kint V, Bontemps J-D, Van Orshoven J, Muys B(2014)Long-term growth changes of common beech(Fagus sylvatica L·)are less pronounced on highly productive sites. Forest Ecol Manage 312:252-259.https://doi.org/10.1016/j.foreco.2013.09.034
    Albert M, Hansen J, Nagel J, Schmidt M, Spellmann H(2015)Assessing risks and uncertainties in forest dynamics under different management scenarios and climate chancge. For Ecosystems 2(1):14. https://doi.org/10.1186/s40663-015-0036-5
    Albert M, Leefken G, Nuske RS, Ahrends B, Sutmoller J, Spellmann H(2016)Auswirkungen von klimatischer Unsicherheit auf die Forstplanung am Beispiel von vier Regionen im norddeutschen Tiefland. Allg Forst Jagdztg187(9/10):161-185
    Albert M, Nagel R-V, Nuske RS, Sutmoller J, Spellmann H(2017)Tree Species Selection in the Face of Drought Risk—Uncertainty in Forest Planning.Forests 8(363). https://doi.org/10.3390/f8100363
    Albert M, Schmidt M(2014)Sensitivitat von Waldentwicklungsprojektionen gegen(u|¨)ber Klimaszenarien und Nutzungsstrategien. In:Kladtke U, Kohnle U(eds)Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde. Annual conference, Lenzen a.d. Elbe, pp 30-43
    Albrecht A, Duran-Rangel C, K(a|¨)ndler G, Schmidt M, Yue C, Kohnle U(2017)Evaluierung verschiedener klimasensitiver Bonit(a|¨)tsmodelle f(u|¨)r Fichte. In:Kladtke U, Kohnle U(eds)Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde. Annual conference,Untermarchtal, pp 59-69
    Allen CD. Macalady AK, Chenchouni H, Bachelet D, McDowell NG, Vennetier M,Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzales P, Fensham R,Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running SW, Semerci A,Cobb N(2010)A global overview of drought and heat induced tree mortality reveals emerging climate change risk for forests. Forest Ecol Manage 259(4):660-684. https://doi.org/10.1016/j.foreco.2009.09.001
    Allen RG, Pereira LS, Raes D, Smith M, Ab W(1998)Crop evapotranspirationGuidelines for computing crop water requirements(FAO Irriga). FAO, Rome
    Anderegg LDL, Anderegg WRL. Berry JA(2013)Not all droughts are created equal:translating meteorological drought into woody plant mortality. Tree Physiol 33(7):701-712. https://doi.org/10.1093/treephys/tpt044
    Arthur CM, Decth JP(2016)Species composition determines resistance to drought in dry forests of the Great Lakes-St. Lawrence forest region of central Ontario region of central Ontario. J Veg Sci. https://doi.org/10.1111/jvs.12416
    Ayres MP, Lombardero MJ(2000)Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263-286
    Barber VA, Juday GP, Finney BP(2000)Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature405(6787):668-673. https://doi.org/10.1038/35015049
    Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ,Cotrufo MF(2013)Elevated CO_2 increases tree-level intrinsic water use efficiency:Insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol 197:544-554. https://doi.org/10.1111/nph.12044
    Bauwe A, Jurasinski G, Scharnweber T, Schr(o|¨)der C, Lennartz B(2015)Impact of climate change on tree-ring growth of Scots pine, common beech and pedunculate oak in northeastern Germany. iForest-Biogeosci For. https://doi.org/10.3832/ifor1421-008
    Berrill J-P, O'Hara KL(2014)Estimating site productivity in irregular stand structures by indexing the basal area or volume increment of the dominant species. Can J Forest Res 4,4:92-100. https://doi.org/10.1139/cjfr-2013-0230
    Bi D, Dix M, Marsland SJ, O'Farrell S, Rashid HA, Uotila P, Hirst AC, Kowalczyk E,Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P.Watterson I. Zhou X, Fiedler R, Collier M, Ma Y, Noonan J. Stcevens L, Uhe P,Zhu H, Griffies SM, Hill R, Harris C, Puri K(2013)The ACCESS coupled model:description, control climate and evaluation. Austr Meteorol Oceanogr J 63:41-64
    Bigler C. Braker OU, Bugmann H, Dobbertin M, Rigling A(2006)Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland.Ecosystems 9:330-343. https://doi.org/10.1007/s10021-005-0126-2
    B(o|¨)ckmann T, Spellmann H, H(u|¨)sing F(1998)Neukonzeption and Weiterentwicklung der Forsteinrichtung in den Niedersachsischen Landesforsten. Forst und Holz 53(10):298-302
    Boisvenue C, Running SW(2006)Impacts of climate change on natural forest productivity-Evidence since the middle of the 20th century. Global Change Biol 12(5):862-882. https://doi.org/10.1111/j.1365-2486.2006.01134.x
    Brang P, Bugmann H, B(u|¨)rgi A, M(u|¨)hlethaler U, Rigling A, Schwitter R(2008)Klimawandel als waldbauliche Herausforderung. Schweiz Z Forstwes 159(10):362-373. https://doi.org/10.3188/szf.2008.0362
    Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS,Gleason SM, Hacke UG, Jacobsen AL. Lens F, Mahcerali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS.Westoby M, Wright IJ, Zanne AE(2012)Global convergence in the vulnerability of forests to drought. Nature 491:752-756. https//doi.org/10.1038/naturel1688
    Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N. Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G. Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S,Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R(2005)Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529-533. https://doi.org/10.1038/nature030972
    Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM,Pascual M, Pielke R Jr, Pizer W, Pringle C, Reid WV, Rose KA, Sala OE,Schlesinger WH, Wall DH, Wear D(2001)Ecological forecasting:an emerging imperative. Science 293(2001):657-660. https://doi.org/10.1126/science.293.5530.657
    Clemensson-Lindell A, Persson H(1995a)Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies. Plant Soil 168(1):167-172.https://doi.org/10.1007/BF00029325
    Clemensson-Lindell A, Persson H(1995b)Nitrex The effects of nitrogen addition and removal on Norway spruce fine-root vitality and distribution in three catchment areas at Gardsj(o|¨)n. Forest Ecol Manage 71(1):123-131. https://doi.org/10.1016/0378-1127(94)06089-2
    de Martonne E(1926)Une nouvelle fonction climatologique:l'indice d'aridité. La Meteorologie 21:449-458
    Desprez-Loustau M-L, Marcais B, Nageleisen L-M, Piou D, Vannini A(2006)Interactive effects of drought and pathogens in forest trees. Ann Forest Sci 63:597-612
    Dobbertin M(2005)Tree growth as indicator of tree vitality and of tree reation to environmental stress:a review. Eur J Forest Res 124:319-333. https://doi.org/10.1007/s10342-005-0085-3
    Dziedek C, Hardtle W, von Oheimb G. Fichtner A(2016)Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species. Front Plant Sci 7(1100). https://doi.org/10.3389/fpls.2016.01100
    Ellsworth DS(1999)CO_2 enrichment in a mature pine forest:are CO_2 exchange and water status in the canopy affected? Plant Cell Environ 22:461-472
    Falk W, Mellert K, Bachmann-Gigl U, K(o|¨)lling C(2013)B(a|¨)ume f(u|¨)r die Zukunft:Baumartenwahl auf wissenschaftlicher Grundlage. LWF Aktuell 94:8-11
    Fleck S, Albert M, Plasil P, Nagel R-V, Sutm(o|¨)ller J. Ahrends B. Schmidt M, Evers J,Hansen J, Overbeck M, Schmidt W, Spellmann H, Meesenburg H(2015)Pilotstudie zu den lokalen Auswirkungen des Klimawandels auf die Forstwirtschaft in ausgewahlten Regionen Sachsen-Anhalts. Beitrage aus der NW-FVA, Band 13, Gottingen
    Foley AM(2010)Uncertainty in regional climate modelling:A review. Progress Phys Geogr 34(5):647-670. https://doi.org/10.1177/030913331037565/4
    Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Tank Klein AMG,Peterson T(2002)Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res 19(3):193-212. https://doi.org/10.3354/cr019193
    F(u|¨)ssel H-M, Klein RJT(2006)Climate Change Vulnerability Assessments:An Evolution of Conceptual Thinking. Climatic Change 75:301-329. https://doi.org/10.1007/s10584-006-01329-3
    Gerstengarbe F-W, Werner PC, Osterle H, Burghoff O(2013)Winter storm-and summer thunderstorm-related loss events with regard to climate change in Germany. Theoret Appl Climatol 114(3):715-724. https:/doi.org/10.1007/s00704-013-0843-y
    Giuggiola A, Bugmann H, Zingg A, Dobbertin M, Rigling A(2013)Reduction of stand density increases drought resistance in xeric Scots pine forests. Forest Ecol Manag 310:827-835.https://doi.org/10.1016/j.foreco.2013.09.030
    Grier CC, Running SW(1977)Leaf area of mature northwestern coniferous forests:Relation to site water balance. Ecology 58(4):893-899
    Handa IT. K(o|¨)rner C. Hattenschwiler S(2006)Conifer stem growth at the altitudinal treeline in response to four years of CO_2 enrichment. Global Change Biol 12:2417-2430
    Hanewinkel M, Cullmann D, Michiels H-G, Kandler G(2014)Converting probabilistic tree species range shift projections into meaningful classes for management. J Environ Manage 134:153-165. https://doi.org/10.1016/j.jenvman.2014.01.010
    Hansen J, Nagel J(2014)Waldwachstumskundliche Softwaresysteme auf Basis von TreeGrOSS-Anwendung und theoretische Grundlagen. Beitrage aus der NW-FVA, Band 11, G(o|¨)ttingen
    Hanson PJ. Weltzin JF(2000)Drought disturbance from climate change:Response of United States forests. Sci Total Environ 262(3):205-220. https://doi.org/10.1016/S0048-9697(00)00523-4
    Hattenschwiler S, Miglietta F, Raschi A, Korner C(1997)Thirty years of in situ tree growth under elevated CO_2:a model for future forest responses? Global Change Biol 3:463-471
    Hogg EHT, Bernier PY(2005)Climate change impacts on drought-prone forests in western Canada. Forest Chron 81(5):675-682
    Hyv(o|¨)nen R, Agren GI, Linder S, Persson T. Cotrufo MF, Ekblad A, Freeman M, Grelle A,Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Landmark T, Norby RJ,Oren R, Pilegaard K. Ryan MG, Sigurdsson BD, Str(o|¨)mgren M, van Oijen M, Wallin G(2007)The likely impact of elevated[CO], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems:a literature review. New Phytologist 173(3):463-480
    IPCC(2013)In:Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J.Nauels A, Xia Y, Bex V, Midgley PM(eds)Climate change 2013:the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York
    Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D, Battisti A, Koricheva J(2011)Drought effects on damage by forest insects and pathogens:a metaanalysis. Global Change Biol. https://doi.org/10.1111/j.1365-2486.2011.02512.x
    Kahle H-P, Spiecker H, Unseld R, Perez-Martinez P-J, Prietzel J, Mellert KH,Straussberger R, Rehfuess KE(2008a)Temporal trends and spatial patterns of height growth in relation to changes in air temperature and precipitation,and in relation to levels of foliar nitrogen and nitrogen deposition. In:Kahle H-P, Kellomaki S, Karjalainen T, Mellert KH, Schuck A, Prietzel J, Agren GI,Rehfuess KE, Spiecker(eds)Causes and consequences of forest growth trends in Europe. European Forest Institute, Leiden. Boston, pp 121-168
    Kahle HP, van Oijen M, Spiecker H, Agren GI, Chertov G, Kellomaki S, Mellert KH,Perez-Martinez P-J, Prietzel J, Straussberger R, Rehfucess KE, Unseld R(2008b)Analysis of the relative importance of nulrients, climatic factors, and C02 as causes of observed changes in growth. In; Kahle H-P, Kellomaki S. Karjalainen T, Mellert KH, Schuck A. Prietzel J. Agren GI, Rehfuess KE, Spiecker(eds)Causes and consequences of forest growth trends in Europe. European Forest Institute,Leiden, Boston, pp 217-234
    Kandlikar M, FRisbey J, Dessai S(2005)Representing and communicating deep uncertainty in climate-change assessments. CR Geoscience 337:443 455.https://doi.org/10.1016/j.crte.2001.10.010
    Katzel R, H(o|¨)ppner K(2011)Adaptation strategies in forest management under the conditions of climate change in Brandenburg. Folia Forest Polon 53(1):43-51
    Keenan TF, Hollinger D, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD(2013)Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature. https://doi.org/10.1038/nature12291
    Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B(2012)Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901-2008. Clim Change 115:343-363.https://doi.org/10.1007/s 10584-012-0465-x
    Klos RJ, Wang GG, Bauerle WL, Rieck JR(2009)Drought impact on forest growth and mortality in the southeast USA:an analysis using Forest Health and Monitoring data. Ecol Appl 19(3):699-708
    Knutti R. Sedlacek J(2012)Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang. https://doi.org/10.1038/nclimate1716
    Kohnle U, Albrecht A, Lenk E, Ohnemus K, Yue C(2014)Growth trends driven by environmental factors extracted from long term experimental data in southwest Germany. Allg Forst Jagdztg 185(5-6):97-117
    Kolling C, Bachmann M, Falk W, Grunert S, Schaller R, Tretter S(2009)KlimaRisikokarten f(u|¨)r heute und morgen. AFZ-Der Wald 64:806-810
    Korner C(2006)Plant CO_2 responses:an issue of definition, time and resource supply. New Phytol 172(3):393-411. https.//doi.org/10.1111/j.1469-8137.2006.01886.x
    Lappi J(1997)A longitudinal analysis of height/diameter curves. Forest Sci 43:555-570
    Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E,Schelhaas MJ, Lasch P, Eggers J, Van Der Maaten-Theunissen M, Suckow F,Psomas A, Poulter B, Hanewinkel M(2014)Climate change and European forests:what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage 146:69-83. https://doi.org/10.1016/j.jenvman.2014.07.030
    Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstr(o|¨)m M, Lexer MJ, Marchetti M(2010)Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manage 259:698-709. https://doi.org/10.1016/j.foreco.2009.09.023
    Menzel A(1997)Phanologie von Waldb(a|¨)umen unter sich andernden Klimabedingungen-Auswertung der Beobachtungen in den Internationalen Phanologischen Garten und M(o|¨)glichkeiten der Modellierung von Phanodaten. Dissertation, LMU, M(u|¨)nchen
    Michelot A, Breda N, Damesin C, Dufrene E(2012)Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecol Manage 265:161-171.https://doi.org/10. 1016/j.foreco.2011.10.024
    Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ(2010)Thenext generation of scenarios for climate change research and assessment.Nature 463(7282):747-756. https//doi.org/10.1038/nature08823
    Nagel J(2013)Waldwachstumssimulatoren and Forstliche Nachhaltigkeit. In:Kladtke U, Kohnle U(eds)Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde. Annual conference, Rychnov nad Kneznou, pp 122-126
    Nagel J(2017)Dokumentation der neuen Ertragstafeln fur Hochdurchforstung.Internal paper, NW-FVA, G(o|¨)ttingen
    Nasholm T, Nohrstedt H-O, Karen O, Kyt(o|¨)M, Bj(o|¨)rkman C(2000)How are forest trees affected? In:Bertills U, N(a|¨)sholm T(eds)Effects of nitrogen deposition on forest ecosystems. Swedish Environmental Protection Agency, Stockholm,pp 53-75
    Ogden AE, Innes J(2007)Incorporating climate change adaptation considerations into forest management planning in the boreal forest. Intl Forest Rev 9(3):713-733
    Orlowsky B. Gerstengarbe FW, Werner PC(2008)A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theoret Appl Climatol 92(3-4):209-223. https://doi.org/10.1007/s00704-007-0352-y
    Orwig DA, Abrams MD(1997)Variation in Radial Growth Responses to Drought Among Species, Site, and Canopy Strata. Trees 11:474-484
    Overbeck M, Schmidt M(2012)Modelling infestation risk of Norway spruce by Ips typographus(L.)in the Lower Saxon Harz Mountains(Germany). Forest Ecol Manage 266:115-125. https:/doi.org/10.1016/j.foreco.2011.11.011
    Persson H, Ahlstrom K(2002)Fine-root response to nitrogen supply in nitrogen manipulated Norway spruce catchment areas. Forest Ecol Manage 168(1-3):29-41. https://doi.org/10.1016/S03781-127(01)00726-5
    Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M(2008)Droughtdriven growth reduction in old beech(Fagus sylvatica L.)forests of the central Apennines, Italy. Global Change Biol 14(6):1265-1281. https:/doi.org/10.1111/j.1365-2486.2008.01570.x
    Pretzsch H, Biber P, Schutze G, Uhl E, R(o|¨)tzer T(2014)Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967. https://doi.org/10.1038/ncomms5967
    Pretzsch H, Schutze G. Uhl E(2013)Resistance of European tree species to drought stress in mixed versus pure forests:Evidence of stress release by inter-specific facilitation. Plant Biol 15(3):483-495. https://doi.org/10.1111/j.1438-8677.2012.00670.x
    Reyer C., Lasch Born P, Suckow I, Gutsch M, Murawski A, Pilz T(2014)Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide, Ann Forest Sci 71(2):211-225. https://doi.org/10.1007/s 13595-013-0306-8
    Schelelhaas MJ, Nahuurs GJ. Hengeveld G, Reyer C, Hanewinkel M, Zimmermann NL, Cullmann D(2015)Alternative forest management strategies to account for climate change-induced productivity and species suitability chancges in Europe. Region Environ Change 15(8):1581-1594. https:/doi.org/10.1007/s10113-015-0788-z
    Schmidt M(2010)Ein standortsensitives, longitudinales H(o|¨)hen-DurchmesserModell als Losung fur das Standort-Leistungs-Problem in Deutschland. In:Nagel J(ed)Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde. Annual conference, Korbecke, pp 131-152
    Schmidt M, Hansen J(2007)Validierung der Durchmesserzuwachsprognose des Waldwachstumssimulators BWINPRO 7.0 fur Fichte und Buche fur den Bereich der alten Bundeslander. In:Nagel J(ed)Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde. Annual conference,Alsfeld, pp 164-179
    Schoneberg S(2017)Ein klimasensitives, autoregressives Modell zur Beschreibung der Einzelbaum-Mortalitat. Dissertation, Georg-August-Universitat, Gottingen
    Schulla J(2015)Model Description WaSIM completely revised version of 2012with 2013 and 2015 extensions, Zurich
    Schulla J. Jasper K(2007)Model description WaSIM-ETH. Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology, Zurich
    Spellmann H, Ahrends B, Albert M, Andert S, Barkmann T, B(o|¨)cher M, Breckling B,Christen O. Dvorak J, Eggers M, Fleck S, Fohrer N, Gauly M, Gerowitt B,Gieseke D, Grocholl J, Hakes W, Hammes V, Hartje V, Haunert G, Hoffmann M,Hufnagel J, Isselstein J, K(a|¨)tzel R, Kayser M, Kehr I, Knauer H, Krott M, Lambertz C, Lange A, Langer G, Leefken G, L(o|¨)ffller S, Meesenburg H, Meiβner R, Messal H, Meyer P, Mohring B, Moller K, Nagel J, Nuske RS, Oetzmann A, Ohrmann S,Cv R, Riediger J, Schmidt M, Schr(o|¨)der J, Schroder W, Siebert R,Spindelndreher D, Stahlmann H, St(o|¨)ck L, Sutm(o|¨)ller J, Svoboda N, Tanzer D;Av T, Ulber B, Wegner K, Werner PC, Winter M; W(u|¨)stemann H, Zander P,Ziesche T(2017)Nachhaltiges Landmanagement im Norddeutschen Tiefland.Beitrage aus der NW-FVA, Band 18, G(o|¨)ttingen. https://doi.org/10.17875/gup2018-1073
    Spellmann H. Albert M, Schmidt M, Sutmoller J, Overbeck M(2011)Waldbauliche Anpassungsstrategien f(u|¨)r veranderte Klimaverhaltnisse. AFZ-DerWald 66(11):19-23
    Spellmann H, Meesenburg H, Schmidt M, Nagel R-V, Sutmoller J, Albert M(2015)Klimaanpassung ist Vorsorge fur den Wald. Strategien zur Stabilisierung der Walder-ohne Aktionismus. proWald-Magazin des Dt. Forstvereins 11:4-10
    Spellmann H, Sutm(o|¨)ller J, Meesenburg H(2007)Risikovorsorge im Zeichen des Klimawandels. AFZ-DerWald 23:1246-1249
    Spittlehouse DL(2005)Integrating climate change adaptation into forest management. Forest Chron 81(5):691-695
    Spittlehouse DL, Stewart RB(2003)Adaptation to climate change in forest management. BC J Ecosyst Manage 4(1):1-11
    Sprauer S, Nagel J(2015)Aboveground productivity of pure and mixed Norway spruce and European beech stands. Eur J Forest Res 134:781-792. https://doi.org/10.1007/s 10342-015-0889-8
    Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M,Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E(2013)Atmospheric component of the MPI-M earth system model:ECHAM6. J Adv Model Earth Syst 5(2):146-172.https://doi.org/10.1002/jame.10015
    Sutmoller J, Meesenburg H, Evers J, Wagner M(2017)Auswirkung der Trockenheit 2015 auf den Bodenwasserhaushalt und das Baumwachstum von Waldstandorten in Nordwestdeutschland. In:Nordwestdeutsche Forstliche Versuchsanstalt(eds.)Waldbbden:Schutz und Nutzung. Beitrage aus der NW-FVA, Band 17:83-98
    Thurm EA, Uhl E, Pretzsch H(2016)Mixture reduces climate sensitivity of Douglas-fir stem growth. Forest Ecol Manage 376:205-220. https://doi.org/10.1016/j.foreco.2016.06.020
    Tognetti R, Cherubini P, Innes J(2000)Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO_2concentrations. New Phytol 146:59-74
    van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC,Kram T, Krey V, Lamarque J-F, Masui T. Meinshausen M, Nakicenovic N, Smith SJ, Rose SK(2011)The representative concentration pathways:an overview.Clim Change 109(1):5. https://doi.org/10.1007/s10584-011-0148-z
    Volodin EM, Dianskii NA, Gusev AV(2010)Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Atm Ocean Phys 46(4):414-431. https://doi.org/10.113-4/S000143381004002X
    von Wilpert K(1990)Die Jahrringstruktur von Fichten in Abhangigkeit vom Bodenwasserhaushalt auf Pseudogley und Parabraunerde:ein Methodenkonzept zur Erfassung standortspezifischer Wasserstreβdisposition.Freiburger bodenkundliche Abhandlungen, Freiburg, p 24
    Vospernik S, Monserud RA, Sterba H(2010)Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine? Forest Ecol Manage 260(10):1735-1753. https://doi.org/10.1016/j.foreco2010.07.055
    Vospernik S. Monserud RA, Sterba H(2015)Comparing individual-tree growth models using principles of stand growth for Norway spruce, Scots pine, and European beech. Can J Forest Res 45:1006-1018. https://doi.org/10.1139/cjfr-2014-0394
    Walker WE, Harresmoes P, Rotmans J, van der SJP. van Asselt MBA, Janssen P,Krayer von Krauss MP(2003)Defining Uncertainty A Conceptual Basis for Uncertainty Management. Integr Assess 4(1):5-17
    Walther A, Linderholm HW(2006)A comparison of growing season indices for the Greater Baltic Area. Intl J Biometeorol 51(2):107-118. https://doi.org/101007/s00484-006-0048-5
    Weber P, Bugmann H, Pluess AR, Walthert L. Rigling A(2013)Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees 27:171-181. https://doi.org/10.1007/s00468-012-0786-4
    Wechsung F, Wechsung M(2014)Short Communication Dryer years and brighter sky-the predicable simulation outcomes for Germany's warmer climate from the weather resampling model STARS. Intl J Climatol. https://doi.org/101002/joc.4220
    Wechsung F, Wechsung M(2015)A methodological critique on using temperature-conditioned resampling for climate projections as in the paper of Gerstengarbe et al.(2013)winter storm-and summer thunderstorm-related loss events in Theoretical and Applied Climatology(TAC). Theoret Appl Climatol. https://doi.org/10.1007/s00704-015-1600-1
    Zhao X, Corral-Rivas J, Zhang C, Temesgen H, von Gadow K(2014)Forest observational studies-an essential infrastructure for sustainable use of natural resources. For Ecosystems 1(8):1-10
    Zingg A, B(u|¨)rgi A(2008)Trockenperioden seit 1900 und Waldwachstum:eine Analyse langfristiger Datenreihen. Schweiz Z Forstwes 159(10):352-361.https://doi.org/10.3188/szf.2008.0352

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700