一步法回收和再生废旧钴酸锂电池中的钴酸锂
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-step recovery and regeneration of LiCoO_2 from the spent lithium cobalt oxide battery
  • 作者:张飞 ; 陆颖舟
  • 英文作者:ZHANG Fei;LU Yingzhou;College of Chemical Engineering, Beijing University of Chemical Technology;
  • 关键词:废旧钴酸锂电池 ; 柠檬酸 ; 溶胶-凝胶法
  • 英文关键词:spent lithium cobalt oxide batteries;;citric acid;;sol-gel method
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:北京化工大学化学工程学院;
  • 出版日期:2019-04-30 14:27
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 语种:中文;
  • 页:HGJZ201908044
  • 页数:7
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:383-389
摘要
采用酸浸法和溶胶-凝胶法耦合的一步法技术路线回收和再生LiCoO_2,简化了流程。先使用柠檬酸浸出正极材料中的Co和Li元素,然后采用溶胶-凝胶法从浸出液中直接再生LiCoO_2,柠檬酸在过程中起到了浸出剂和螯合剂的双重作用,简化了回收和再生流程。摸索了柠檬酸浓度、固液比、浸出温度、H_2O_2体积浓度和浸出时间对Co和Li浸出效率的影响规律,探究了煅烧温度对再生钴酸锂结构组成、颗粒形貌以及电化学性能的影响规律。结果表明,最佳浸出条件为:柠檬酸浓度为1.5mol/L,固液比为20g/L,浸出温度为80℃,H_2O_2体积分数为2%,浸出时间为60min。在此条件下,Co和Li的浸出率分别达到93.7%、98.2%。通过电化学分析表明,在700℃下煅烧得到的再生LiCoO_2电化学性能最佳,在1C下经50次循环后可逆放电比容量为118.7mA·h/g,容量保持率为93%。
        In this work, we developed a one-step technique coupling acid leaching and sol-gel method to recover and regenerate LiCoO_2 from the spent lithium cobalt oxide batteries. First, citric acid was used to extract the Co and Li from the cathode material, and then LiCoO_2 was directly regenerated from the leaching solution by sol-gel method. Citric acid acted both as leaching agent and chelating agent in the process, simplified the process of recovery and regeneration. The effects of citric acid concentration, solidliquid ratio, leaching temperature, volume concentration of hydrogen peroxide and leaching time on the leaching efficiency of Co and Li were explored and the effects of calcination temperature on the structure,morphology and electrochemical properties of the reclaimed lithium cobalt oxide were investigated. The results showed that the optimum leaching conditions were citric acid concentration of 1.5 mol/L, solidliquid ratio of 20 g/L, leaching temperature of 80℃, H_2O_2 content of 2%, and leaching time of 60 minutes.Under these conditions, the leaching rates of Co and Li reached 93.7% and 98.2% respectively. The electrochemical analysis indicated that the regenerated LiCoO_2 by calcination at 700℃ had the best electrochemical performance. The specific discharge capacity of the regenerated LiCoO2 was 118.7 mA·h/g,at 1 C after 50 cycles, with a capacity retention of 93%.
引文
[1] FERGUS J W. Recent developments in cathode materials for lithium ion batteries[J]. Power Sources, 2010, 195(4):939-954.
    [2] WANG X, GAUSTAD G, BABBITT C W, et al. Economic and environmental characterization of an evolving Li-ion battery waste stream[J]. Waste Manage, 2014, 135:126-134.
    [3]孟奇,张英杰,董鹏,等.废旧锂离子电池中钴、锂的回收研究进展[J].化工进展, 2017, 36(9):3485-3491.MENG Qi, ZHANG Yingjie, DONG Peng, et al. Recovery of Co and Li from spent lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2017, 36(9):3486-3491.
    [4] JOULIE M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Power Sources, 2014,247:551-555.
    [5] MA L, NIE Z, XI X, et al. Cobalt recovery from cobalt-bearing waste in sulphuric and citric acid systems[J]. Hydrometallurgy, 2013, 136:1-7.
    [6] ZHANG X, XIE X, LIN X, et al. An overview on the processes and technologies for recycling cathodic active materials from spent lithiumion batteries[J]. Journal of Material Cycles and Waste Management,2013, 15:420-430.
    [7] LI L, QU W, ZHANG X, et al. Succinic acid-based leaching system:a sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Power Sources, 2015, 282:544-551.
    [8] CHEN X, ZHOU T, KONG J, et al. Separation and recovery of metal values from leach liquor of waste lithium nickel cobalt manganese oxide based cathodes[J]. Separation and Purification Technology,2015, 141:76-83.
    [9] LI L, DUNN J B, ZHANG X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment[J]. Power Sources, 2013, 233:180-189.
    [10] LI L, LU J, REN Y, et al. Ascorbic acid assisted recovery of cobalt and lithium from spent Li-ion batteries[J]. Power Sources, 2012, 218:21-27.
    [11]唐致远,阮艳莉.新型锂离子电池正极材料的研究进展[J].化工进展, 2004, 23(8):801-805.TANG Zhiyuan, RUAN Yanli. Progress in research of olivine-type cathode material in Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2004, 23(8):801-805.
    [12]王兴杰,杨文胜,卫敏,等.柠檬酸溶胶凝胶法制备LiCoO2电极材料及其表征[J].无机化学学报,2003, 19(6):603-608.WANG Xingjie, YANG Wensheng, WEI Min, et al. Synthesis and characterization of LiCoO2electrode material by citrate sol-gel method[J]. Chinese Journal of Inorganic Chemistry, 2003, 19(6):603-608.
    [13] CHIANG Y M, JIANG Y I, WANG H F, et al. Synthesis of LiCoO2by decomposition and intercation of hydroxides[J]. Power Sources, 1998,72:215-220.
    [14] WATANABO Tomoaki, UONO Hiroyuki, SONG Seung-Wan, et al.Direct fabrication of lithium cobalt oxide films on various substrates in flowing aqueous solution at 150℃[J]. Journal of Solid State Chemistry,2001, 162(2):364-370.
    [15]前知勉编.塑料性能应用手册(修订版)[M].上海:上海科学技术文献出版社,1987:302-306.QIAN Zhimian. Application manual of plastic performance(Revised Edition)[M]. Shanghai:Shanghai Science and Technology Literature Publishing House, 1987:302-306.
    [16] CHUNG N H, TABATA M. Salting-out phase separation of the mixture of 2-propanol and water for selective extraction of cobalt(Ⅱ)in the presence of manganese(Ⅱ), nickel(Ⅱ)and copper(Ⅱ)[J].Hydrometallurgy, 2004, 73(1/2):81-89.
    [17] MA L, NIE Z, XI X, HAN X G. Cobalt recovery from cobalt bearing waste in sulphuric and citric acid systems[J]. Hydrometallurgy, 2013,136:1-7.
    [18]闫使建,田文怀,其鲁.不同温度下合成的LiCoO2的晶体结构[J].无机化学学报, 2006, 22(2):211-216.YAN Shijian, TIAN Wenhuai, QI Lu. Crystal structures of LiCoO2synthesized at different temperatures[J].Chinese Journal of Inorganic Chemistry, 2006, 22(2):211-216.
    [19]傅秋莲,蒋晓瑜,陈文哲.柠檬酸溶胶凝胶法合成LiCoO2的晶体结构研究[J].光谱学与光谱分析, 2008, 28(6):1222-1226.FU Qiulian, JIANG Xiaoyu, CHEN Wenzhe. Study on the structure of LiCoO2synthesized by sol-gel with citric acid[J]. Spectroscopy and Spectral Analysis, 2008, 28(6):1222-1226.
    [20] ANTOLINI E, FERRETTI M. Synthesis and thermal stability of LiCoO2[J]. J. Solid State Chem., 1995, 117:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700