基于共价有机框架复合材料的锂硒电池应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Lithium-Selenium Batteries Using Covalent Organic Framework Composite Cathodes
  • 作者:李路路 ; 姚路 ; 段力
  • 英文作者:LI Lulu;YAO Lu;DUAN Li;Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University;
  • 关键词:锂硒电池 ; 多壁碳纳米管 ; 共价有机框架 ; 纳米复合材料 ; 核壳结构
  • 英文关键词:Lithium-selenium battery;;Multi-walled carbon nanotube;;Covalent organic frameworks;;Nanocomposites;;Core-shell structure
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:上海交通大学电子信息与电气工程学院薄膜与微细技术教育部重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:物理化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(61376003)资助项目~~
  • 语种:中文;
  • 页:WLHX201907011
  • 页数:6
  • CN:07
  • ISSN:11-1892/O6
  • 分类号:84-89
摘要
本文利用溶剂热反应方法,在多壁碳纳米管(MWCNTs)管壁上生长了共价有机框架(TpPa-COF)材料,并将这种核壳多壁碳纳米管/共价有机框架纳米复合材料(MWCNTs@TpPa-COF)成功应用在锂硒电池上。利用场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和傅里叶变换红外光谱(FT-IR)等手段对材料结构进行表征,结果表明多壁碳纳米管和共价有机框架材料成功复合。电化学测试结果表明,该材料在电流密度3C(1C=675mA·g~(-1))下的质量比容量为463.5 mAh·g~(-1),500次循环后能保持99%的库仑效率,表明锂硒电池具有优异的循环稳定性和较长的循环寿命。
        Li-S batteries are considered promising next-generation energy storage systems because they offer high theoretical specific capacity(1675 m Ah·g~(-1)), high energy density(2600 Wh·kg~(-1)), environmental friendliness, and low cost. However, large-scale commercial applications are hindered by the low electrical conductivity of S, high volume expansion ratio, and high solubility of intermediate polysulfides in organic electrolytes. Li-Se batteries using Se as the cathode material have high discharge rates, good cyclic performance, high electrical conductivities, high output voltages, and high volumetric capacity densities, and therefore, they are potential alternatives to Li-S systems. Recently, covalent organic frameworks(COFs) have emergedas new porous crystalline materials with large specific surface areas, high porosities, low densities, good thermal stabilities, and controllable structures. Therefore, COFs have wide potential applicability in the fields of gas adsorption, heterogeneous catalysis, energy storage, and drug delivery. Based on the above analysis, a simple core-shell multiwalled carbon nanotube(MWCNT)/1,3,5-triformylphloroglucinol(Tp)-phenylenediamine(Pa) COF nanocomposite(MWCNT@TpPa-COF) was prepared by growing a TpPa-COF on MWCNTs through a simple solvothermal reaction. The MWCNT@TpPa-COF highperformance cathode material realizes the first application of a COF in Li-Se batteries. The MWCNTs can encapsulate Se, limit the diffusion of polyselenides(Li2 Sen, 3 ≤ n ≤ 8), and provide rapid electron conduction and ion transmission. In addition, the π-π interaction between MWCNTs and COFs promotes COF growth and distribution on the MWCNTs, thereby forming core-shell MWCNT@TpPa-COF nanocomposites, which can further increase the loading of Se. Measurements via field-emission scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy confirmed the successful combination of MWCNTs and COFs. The rich micro-and mesoporous hierarchical structure provides the MWCNT@TpPa-COF nanocomposites with initial specific discharge capacities reaching 463.5 mAh·g~(-1) at the current density of 3 C(1 C = 675 m A·g~(-1)). Cells utilizing the nanocomposite electrodes maintained 99% Coulombic efficiency, with the average cyclic capacitive loss of 0.14% after 500 cycles. In addition, electrochemical impedance spectroscopy, cyclic voltammetry, and multiple-rate cycling analyses support the excellent electrochemical performance of the proposed cathode material. This work provides a promising new prospect for the future development of rechargeable Li-Se batteries utilizing new COF-based cathode materials.
引文
(1)Fan,S.;Zhang,Y.;Li,S.H.;Lan,T.Y.;Xu,J.L.RSC Adv.2017,7,21281.doi:10.1039/C6RA28463A
    (2)Su,J.;Wu,X.L.;Lee,J.S.;Kim,J.;Guo,Y.G.J.Mater.Chem.A2013,1,2508.doi:10.1039/C2TA01254E
    (3)Huang,S.Z.;Cai,Y.;Jin,J.;Liu,J.;Li,Y.;Yu,Y.;Wang,H.E.;Chen,L.H.;Su,B.L.Nano Energy 2015,12,833.doi:0.1016/j.nanoen.2015.01.040
    (4)Li,Z.;Wu,H.B.;Lou,X.W.Energy Environ.Sci.2016,9,3061.doi:10.1039/C6EE02364A
    (5)Ding,Y.L.;Kopold,P.;Hahn,K.;van Aken,P.A.;Maier,J.;Yu,Y.Adv.Funct.Mater.2016,26,1112.doi:10.1002/adfm.201504294
    (6)Liu,X.;Huang,J.Q.;Zhang,Q.;Mai,L.Q.Adv.Mater.2017,29,1601759.doi:10.1002/adma.201601759
    (7)Zhang,J.;Yang,C.P.;Yin,Y.X.;Wan,L.J.;Guo,Y.G.Adv.Mater.2016,28,9539.doi:0.1002/adma.201602913
    (8)Yin,Y.X.;Xin,S.;Guo,Y.G.;Wan,L.J.Angew.Chem.Int.Ed.2013,52(50),13186.doi:10.1002/anie.201304762
    (9)Park,S.K.;Lee,J.;Hwang,T.;Piao,Y.Z.J.Mater.Chem.A 2017,5,975.doi:10.1039/C6TA08557A
    (10)Wang,H.Q.;Zhang,W.C.;Liu,H.K.;Guo,Z.P.Angew.Chem.Int.Ed.2016,55(12),3992.doi:10.1002/anie.201511673
    (11)Liu,S.;Yao,L.;Zhang,Q.;Li,L.L.;Hu,N.T.;Wei,L.M.;Wei,H.Acta Phys.-Chim.Sin.2017,33(12),2339.[刘帅,姚路,章琴,李路路,胡南滔,魏良明,魏浩.物理化学学报.2017,33(12),2339.]doi:10.3866/PKU.WHXB201706021
    (12)Abouimrane,A.;Dambournet,D.;Chapman,K.W.;Chupas,P.J.;Weng,W.;Amine,K.J.Am.Chem.Soc.2012,134(10),4505.doi:10.1021/ja211766q
    (13)Ma,J.M.;Sun,C.S.;Lian,J.B.;Zheng,W.J.Cryst.Res.Technol.2009,44(4),391.doi:10.1002/crat.200800380
    (14)Chung,S.H.;Manthiram,A.Chem.Commun.2014,50,4184.doi:10.1039/C4CC00850B
    (15)Zhang,Z.A.;Zhang,Z.Y.;Zhang,K.;Yang,X.;Li,Q.RSC Adv.2014,4,15489.doi:10.1039/C4RA00446A
    (16)Zeng,L.C.;Zeng,W.C.;Jiang,Y.;Wei,X.;Li,W.H.;Yang,C.L.;Zhu,Y.W.;Yu,Y.Adv.Energy Mater.2015,5(4),1401377.doi:10.1002/aenm.201401377
    (17)Liu,L.L.;Hou,Y.Y.;Wu,X.W.;Xiao,S.Y.;Chang,Z.;Yang,Y.Q.;Wu,Y.P.Chem.Commun.2013,49,11515.doi:10.1039/C3CC46943C
    (18)Sun,F.G.;Cheng,H.Y.;Chen,J.Z.;Zheng,N.;Li,Y.S.;Shi,J.L.ACS Nano 2016,10(9),8289.doi:10.1021/acsnano.6b02315
    (19)Yang,C.P.;Xin,S.;Yin,Y.X.;Ye,H.;Zhang,J.;Guo,Y.G.Angew.Chem.Int.Ed.2013,52(32),8363.doi:10.1002/anie.201303147
    (20)Lee,J.T.;Kim,H.;Oschatz,M.;Lee,D.C.;Wu,F.;Lin,H.T.;Zdyrko,B.;Cho,W.I.;Kaskel,S.;Yushin,G.Adv.Energy Mater.2015,5(1),140098.doi:10.1002/aenm.201400981
    (21)Qu,Y.H.;Zhang,Z.A.;Jiang,S.F.;Wang,X.W.;Lai,Y.Q.;Liu,Y.X.;Li,J.J.Mater.Chem.A 2014,2,12255.doi:10.1039/C4TA02563F
    (22)He,J.R.;Lv,W.Q.;Chen,Y.F.;Xiong,J.;Wen,K.C.;Xu,C.;Zhang,W.L.;Li,Y.R.;Qin,W.;He,W.D.J.Power Sources 2017,363,103.doi:10.1016/j.jpowsour.2017.07.065
    (23)Balakumar,K.;Kalaiselvi,N.Carbon 2017,112,79.doi:10.1016/j.carbon.2016.10.097
    (24)Cai,Q.F.;Li,Y.Y.;Wang,L.;Li,Q.W.;Xu,J.;Gao,B.;Zhang,X.M.;Huo,K.F.;Chu,P.K.Nano Energy 2017,32,1.doi:10.1016/j.nanoen.2016.12.010
    (25)Han,Y.;Hu,N.T.;Liu,S.;Hou,Z.Y.;Liu,J.Q.;Hua,X.L.;Yang,Z.;Wei,L.M.;Wang,L.;Wei,H.Nanotechnology 2017,28(33),33LT01.doi:10.1088/1361-6528/aa7bb6
    (26)Sun,Q.;Aguila,B.;Perman,J.;Earl,L.D.;Abney,C.W.;Cheng,Y.C.;Wei,H.;Nguyen,N.;Wojtas,L.;Ma,S.Q.J.Am.Chem.Soc.2017,139(7),2786.doi:10.1021/jacs.6b12885
    (27)Li,L.L.;Liu,S.;Zhang,Q.;Hu,N.T.;Wei,L.M.;Yang,Z.;Wei,H.Acta Phys.-Chim.Sin.2017,33(10),1960.[李路路,刘帅,章琴,胡南滔,魏良明,杨志,魏浩.物理化学学报.2017,33(10),1960.]doi:10.3866/PKU.WHXB201705191
    (28)Zhang,X.;Wang,Z.;Yao,L.;Mai,Y.Y.;Liu,J.Q.;Hua,X.L.;Wei,H.Mater.Lett.2018,213,143.doi:10.1016/j.matlet.2017.11.002
    (29)Fang,R.P.;Zhou,G.M.;Pei,S.F.;Li,F.;Cheng,H.M.Chem.Commun.2015,51(17),3667.doi:10.1039/C5CC00089K
    (30)Liu,Y.X.;Si,L.;Zhou,X.S.;Liu,X.;Xu,Y.;Bao,J.C.;Dai,Z.H.J.Mater.Chem.A 2014,2(42),17735.doi:10.1039/C4TA03141E
    (31)Hong,Y.J.;Kang,Y.C.Carbon 2017,111,198.doi:10.1016/j.carbon.2016.09.069
    (32)Chong,J.H.;Sauer,M.;Patrick,B.O.;MacLachlan,M.J.Org.Lett.2003,5(21),3823.doi:10.1021/ol0352714
    (33)Li,D.Preparation and Electrochemical Performance of Mesoporous Carbon/Sulfur Composite Cathode Materials.M.S.Dissertation,Dalian University of Technology,Dalian,2013.[李多.介孔炭/硫复合正极材料制备及电化学性能研究[D].大连:大连理工大学,2013.]
    (34)Huang,D.K.;Li,S.H.;Luo,Y.P.;Xiao,X.;Gao,L.;Wang,M.K.;Shen,Y.Electrochim.Acta.2016,190,258.doi:10.1016/j.electacta.2015.12.187
    (35)Chen,C.;Zhao,C.H.;Hu,Z.B.;Liu,K.Y.Funct.Mater.Lett.2017,10(2),1650074.doi:10.1142/S1793604716500740
    (36)Kalimuthu,B.;Nallathamby,K.ACS Appl.Mater.Inter.2017,9(32),26756.doi:10.1021/acsami.7b05103
    (37)Youn,H.C.;Jegal,J.P.;Park,S.H.;Kim,H.K.;Park,H.S.;Roh,K.C.;Kimet,K.B.ACS Nano 2014,8(3),2279.doi:10.1021/nn405633p
    (38)Zhang,H.;Yu,F.Q.;Kang,W.P.;Shen,Q.Carbon 2015,95,354.doi:10.1016/j.carbon.2015.08.050
    (39)Liu,T.;Zhang,Y.;Hou,J.K.;Lu,S.Y.;Jiang,J.;Xu,M.W.RSCAdv.2015,5,84038.doi:10.1039/C5RA14979G
    (40)Zhang,J.J.;Fan,L.;Zhu,Y.C.;Xu,Y.H.;Liang,J.W.;Qian,Y.T.Nanoscale 2014,6,12952.doi:10.1039/C4NR03705G
    (41)Sun,K.L.;Zhao,H.B.;Zhang,S.Q.;Yao,J.;Xu,J.Q.Ionics 2015,21(9),2477.doi:10.1007/s11581-015-1451-x
    (42)Cui,Y.J.;Abouimrane,A.;Lu,J.;Bolin,T.;Ren,Y.;Weng,W.;Sun,C.J.;Maroni,V.A.;Heald,S.M.;Amine,K.J.Am.Chem.Soc.2013,135(21),8047.doi:10.1021/ja402597g
    (43)Deng,Z.F.;Zhang,Z.A.;Lai,Y.Q.;Liu,J.;Li,J.;Liu,Y.X.J.Electrochem.Soc.2013,160(4),A553.doi:10.1149/2.026304jes
    (44)Choi,H.S.;Oh,J.Y.;Park,C.R.RSC Adv.2014,4,3684.doi:10.1039/C3RA45187A
    (45)Peng,X.;Wang,L.;Zhang,X.M.;Gao,B.;Fu,J.J.;Xiao,S.;Huo,K.F.;Chu,P.K.J.Power Sources 2015,288,214.doi:10.1016/j.jpowsour.2015.04.124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700