环境因素影响下GIL温升特性的仿真计算分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and analysis of GIL temperature rise characteristics under effects of environmental factors
  • 作者:周利军 ; 张讥培 ; 王朋成 ; 仇祺沛 ; 何健 ; 刘栋财
  • 英文作者:ZHOU Lijun;ZHANG Jipei;WANG Pengcheng;QIU Qipei;HE Jian;LIU Dongcai;School of Electrical Engineering,Southwest Jiaotong University;
  • 关键词:GIL ; 耦合 ; 损耗 ; 温升 ; 环境因素
  • 英文关键词:GIL;;coupling;;losses;;temperature rise;;environmental factors
  • 中文刊名:DLZS
  • 英文刊名:Electric Power Automation Equipment
  • 机构:西南交通大学电气工程学院;
  • 出版日期:2019-01-04 16:18
  • 出版单位:电力自动化设备
  • 年:2019
  • 期:v.39;No.297
  • 语种:中文;
  • 页:DLZS201901031
  • 页数:8
  • CN:01
  • ISSN:32-1318/TM
  • 分类号:217-224
摘要
为研究不同环境因素对架空敷设式气体绝缘金属封闭输电线路(GIL)温升特性的影响,建立电磁场-热场-流场多物理场耦合计算模型,进而分析了不同环境因素影响下GIL外壳和导体温度变化特征、外壳外表面的对流换热系数变化及不同负载GIL温升受环境因素影响的差异性。结果表明:风速与GIL温降的关系是非线性的,风速在0~3 m/s时,外壳和导体的温度下降较快,当风速高于3 m/s时,外壳和导体温度随风速增加下降速度越来越小,最终导体温度趋于稳定值,外壳温度逐渐接近于环境温度,当风速相同时,GIL负荷电流越大,导体和外壳温降速度越大;太阳辐射强度对GIL温升的影响基本呈线性关系,且太阳辐射强度对外壳温升的影响更明显,太阳辐射强度相同时,导体和外壳的温升差随负载电流的增加而减小;导体和外壳温度与环境温度基本呈等斜率线性关系。
        In order to study the influence of different environmental factors on temperature rise characteristics of overhead GIL( Gas-Insulated metal enclosed transmission Line),an electromagnetic-thermal-flow coupling model is established,with which,the temperature variation characteristics of GIL shell and conductor,the convective heat transfer coefficient of shell surface and the difference of GIL temperature rise under different environmental factors are analyzed. The results show:the relationship between wind speed and GIL temperature drop is non-linear;if wind speed is in the interval of 0 to 3 m/s,the temperature of shell and conductor decreases rapidly;when wind speed is bigger than 3 m/s,the temperature decrease of shell and conductor becomes smaller along with the increase of wind speed,and finally keeps a stable value,the shell temperature is gradually close to the environmental temperature;when wind speed is the same,the bigger GIL load current is,the greater conductor and shell temperature drops;the effect of solar radiation intensity on GIL temperature rise is basically linear and more obvious on temperature rise of shell;under the same solar radiation intensity,the difference of temperature rise between conductor and shell decreases along with the increase of load current;the temperature of conductor and shell is basically linear with the environmental temperature.
引文
[1]KOCH H,SCHUETTE A. Gas insulated transmission lines for high power transmission over long distances[J]. Electric Power System Research,1998,44(1):69-74.
    [2]BENATO R,CARLINI E M,MARIO C D,et al. Gas-insulated transmission lines in railway galleries[J]. IEEE Transactions on Power Delivery,2005,20(2):704-709.
    [3] VOLCKER O,KOCH H. Insulation coordination for gas-insulated transmission lines[J]. IEEE Transactions on Power Delivery,2011,16(1):122-130.
    [4]HO S L,LI Y,EDWARD W C,et al. Analysis of three-dimensional eddy current field and thermal problems in an isolated phase bus[J]. IEEE Transactions on Magnetics,2003,39(3):1515-1518.
    [5]曾雨顺.智能化GIS中SF6气体在线监测系统的研究[D].南京:国网电力科学研究院,2013.ZENG Yushun. The research of on-line monitoring system of SF6gas intelligent GIS[D]. Nanjing:State Grid Electric Power Research Institute,2013.
    [6]KIM S W,KIM H H,HAHN S C,et al. Coupled finite-element-analytic technique for prediction of temperature rise in power apparatus[J]. IEEE Transactions on Magnetics,2002,38(2):921-924.
    [7]范镇南,张德威,陈显坡,等. GIS母线损耗发热状况的电磁场与流场计算分析[J].中国电机工程学报,2009,29(增刊):241-244.FAN Zhennan,ZHANG Dewei,et al. Electromanetic field and fluid field calculation and analysis about the loss and heat of GIS bus bar[J]. Proceedings of the CSEE,2009,29(Supplement):241-244.
    [8]李洪涛,舒乃秋,孙国霞,等.基于相似理论与准则关联式的气体绝缘母线电磁场-温度场综合模拟[J].电力自动化设备,2014,34(9):59-63.LI Hongtao,SHU Naiqiu,SUN Guoxia,et al. Comprehensive simulation of electromagnetic-temperature field in GIB based on similarity theory and nondimensional correlation[J]. Electric Power Automation Equipment,2014,34(9):59-63.
    [9]范镇南,张德威,陈显坡,等.用电磁场和流场模型计算GIS母线损耗发热[J].高电压技术,2009,34(12):3016-3021.FAN Zhennan,ZHANG Dewei,CHEN Xianpo,et al. Calculation of loss and heat of GIS bus bar using electromagnetic field and fluidfield[J]. High Voltage Engineering,2009,34(12):3016-3021.
    [10]吴晓文,舒乃秋,李洪涛,等.基于流体多组分传输的气体绝缘母线温度场数值计算与分析[J].中国电机工程学报,2012,32(33):141-147.WU Xiaowen,SHU Naiqiu,LI Hongtao,et al. Thermal field calculation and analysis of gas insulated busbars based on fluid multiple species transport[J]. Proceedings of the CSEE,2012,32(33):141-147.
    [11]金向朝,谢志杨,刘秀甫,等.基于有限元法的三相同壳结构GIS母线热分析[J].武汉大学学报,2013,46(5):654-658.JIN Xiangzhao,XIE Zhiyang,LIU Xiufu,et al. Thermal analysis of three-phase enclosed GIS bus bar based on finite-element method[J]. Journal of Wuhan University,2013,46(5):654-658.
    [12]吴晓文,舒乃秋,李洪涛,等.气体绝缘输电线路温升数值计算及相关因素研究[J].电工技术学报,2013,28(1):65-72.WU Xiaowen,SHU Naiqiu,LI Hongtao,et al. Thermal rise numerical calculation and correlative factors analysis of gas-insulated transmission lines[J]. Transactions of China Electrotechnical Society,2013,28(1):65-72.
    [13]张扬,舒乃秋,罗晓庆.基于有限元法的直埋式气体绝缘输电线路温升数值计算与分析[J].武汉大学学报,2015,48(6):820-825.ZHANG Yang,SHU Naiqiu,LUO Xiaoqing. Temperature rise numerical calculation and analysis of gas-insulated transmission lines based on finite element method[J]. Journal of Wuhan University,2015,48(6):820-825.
    [14]MINAGUCHI D,GINUO M,ITAKA K,et al. Heat transfer characteristics of gas-insulated transmission lines[J]. IEEE Transactions on Power Delivery,1986,1(1):2-9.
    [15]HO S L,LI Y,LIN X,et al. Calculations of eddy current,fluid,and thermal fields in an air insulated bus duct system[J]. IEEE Transactions on Magnetics,2007,43(4):1433-1436.
    [16]宋凡,申春红,林莘,等. 800 kV GIS隔离开关磁场-温度场计算与分析[J].高电压技术,2008,34(7):1383-1388.SONG Fan,SHEN Chunhong,LIN Xin,et al. Calculation and analysis on magneto-thermal fields of 800 k V GIS disconnector[J].High Voltage Engineering,2008,34(7):1383-1388.
    [17]孙国霞,关向雨,金向朝,等.基于多场耦合计算的气体绝缘开关设备母线接头过热性故障分析[J].高电压技术,2014,40(11):3445-3451.SUN Guoxia,GUAN Xiangyu,JIN Xiangchao,et al. Temperature rise calculation and overheating fault analysis of gas insulated switchgear bus connector based on coupled field theory[J]. High Voltage Engineering,2014,40(11):3445-3451.
    [18]陶文铨.数值传热学[M]. 2版.西安:西安交通大学出版社,2006:2-8.
    [19]HAM J K,KIM Y K,KIM J S,et al. Heat transfer in gas-insulated bus bars[C]∥Proceedings of the ASME Summer Heat Transfer Conference. Las Vegas,USA:ASME,2003:453-459.
    [20] WU Xiaowen,NAI Qiushu,LI Hongtao,et al. Contact temperature prediction in three-phase gas-insulated bus bars with the finite-element method[J]. IEEE Transactions on Magnetics,2014,50(2):277-280.
    [21]于承训.工程传热学[M].成都:西南交通大学出版社,1990:89-98.
    [22]章熙民,任泽霈,梅飞鸣.传热学[M]. 6版.北京:中国建筑工业出版社,2008:111-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700