肌动蛋白细胞骨架在小鼠第二生心区祖细胞部署发育中的作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The role of actin cytoskeleton in regulating the deployment process of mouse cardiac second heart field progenitor cells
  • 作者:刘钟颖 ; 黄霞 ; 李紫怡 ; 杨子豪 ; 袁白银
  • 英文作者:Zhongying Liu;Xia Huang;Ziyi Li;Zihao Yang;Baiyin Yuan;College of Life Science and Health, Wuhan University of Science and Technology;
  • 关键词:肌动蛋白 ; 第二生心区 ; 细胞部署 ; 小鼠
  • 英文关键词:actin;;second heart field;;cell deployment;;mouse
  • 中文刊名:YCZZ
  • 英文刊名:Hereditas
  • 机构:武汉科技大学生命科学与健康学院;
  • 出版日期:2019-01-29 16:14
  • 出版单位:遗传
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目(编号:31701266)资助~~
  • 语种:中文;
  • 页:YCZZ201902004
  • 页数:12
  • CN:02
  • ISSN:11-1913/R
  • 分类号:41-52
摘要
脊椎动物心管起源于早期胚胎的生心中胚层细胞,随后从邻近的咽中胚层和内脏中胚层中逐渐添加第二生心区(second heart field, SHF)祖细胞而延长。SHF细胞向心管贡献受损,使心管不能最大限度地延长,导致一系列的心脏发育缺陷,包括最常见的右心室发育不良与流出道分隔旋转异常等先天性出生缺陷。SHF祖细胞构成非经典顶端-基底极性上皮,并具有顶部单纤毛、动态肌动蛋白(actin)富集基底端的丝状伪足等特点。本文总结了actin细胞骨架在小鼠SHF祖细胞部署发育过程中的研究进展,揭示actin细胞骨架在SHF祖细胞发育特别是SHF细胞向流出道部署过程中的重要性,以期为阐明和理解SHF祖细胞迁移、部署的细胞生物学特性提供一定的理论参考。
        The vertebrate heart tube originates from cardiogenic mesodermal cells in the early embryo, and subsequently elongates by progressive addition of second heart field(SHF) progenitor cells from adjacent pharyngeal mesoderm and splanchnic mesoderm. Insufficient addition of SHF cells to the heart tube causes the failure of maximal elongation of the heart tube, which results in a series of developmental defects including the most common congenital birth defects, such as right ventricular dysplasia and outflow tract septation, and alignment anomalies. SHF cells form an atypical, apicobasally polarized epithelium which is characterized by apical monocilia, and dynamic actin-rich basal filopodia. In this review, we summarize recent research progresses of actin cytoskeleton in the deployment process of mouse SHF progenitor cells, and reveal the significance of actin cytoskeleton in SHF development, especially in the deployment of SHF cells to the outflow tract, to provide theoretical reference for elucidating and understanding the biological characteristics of SHF deployment.
引文
[1]Bruneau BG.The developmental genetics of congenital heart disease.Nature,2008,451(7181):943-948.
    [2]Vincent SD,Mayeuf-Louchart A,Watanabe Y,Brzezinski JA IV,Miyagawa-Tomita S,Kelly RG,Buckingham M.Prdm1 functions in the mesoderm of the second heart field,where it interacts genetically with tbx1,during outflow tract morphogenesis in the mouse embryo.Hum Mol Genet,2014,23(19):5087-5101.
    [3]Evans SM,Yelon D,Conlon FL,Kirby ML.Myocardial lineage development.Circ Res,2010,107(12):1428-1444.
    [4]Buckingham M,Meilhac S,Zaffran S.Building the mammalian heart from two sources of myocardial cells.Nat Rev Genet,2005,6(11):826-835.
    [5]Vincent SD,Buckingham ME.How to make a heart:The origin and regulation of cardiac progenitor cells.Curr Top Dev Biol,2010,90:1-41.
    [6]Dyer LA,Kirby ML.The role of secondary heart field in cardiac development.Dev Biol,2009,336(2):137-144.
    [7]Sinha T,Li D,Théveniau-Ruissy M,Hutson MR,Kelly RG,Wang J.Loss of wnt5a disrupts second heart field cell deployment and may contribute to oft malformations in digeorge syndrome.Hum Mol Genet,2015,24(6):1704-1716.
    [8]Sinha T,Wang B,Evans S,Wynshaw-Boris A,Wang J.Disheveled mediated planar cell polarity signaling is required in the second heart field lineage for outflow tract morphogenesis.Dev Biol,2012,370(1):135-144.
    [9]Francou A,Saint-Michel E,Mesbah K,Kelly RG.Tbx1regulates epithelial polarity and dynamic basal filopodia in the second heart field.Development,2014,141(22):4320-4331.
    [10]Kelly RG.The second heart field.Curr Top Dev Biol,2012,100:33-65.
    [11]van den Berg G,Abu-Issa R,de Boer BA,Hutson MR,de Boer PA,Soufan AT,Ruijter JM,Kirby ML,van den Hoff MJ,Moorman AF.A caudal proliferating growth center contributes to both poles of the forming heart tube.Circ Res,2009,104(2):179-188.
    [12]Mesbah K,Harrelson Z,Théveniau-Ruissy M,Papaioannou VE,Kelly RG.Tbx3 is required for outflow tract development.Circ Res,2008,103(7):743-750.
    [13]Cortes C,Francou A,De Bono C,Kelly RG.Epithelial properties of the second heart field.Circ Res,2018,122(1):142-154.
    [14]de la Cruz MV,Sánchez Gómez C,Arteaga MM,Argüello C.Experimental study of the development of the truncus and the conus in the chick embryo.J Anat,1977,123(Pt 3):661-686.
    [15]Viragh S,Challice CE.Origin and differentiation of cardiac muscle cells in the mouse.J Ultrastruct Res,1973,42(1):1-24.
    [16]Mjaatvedt CH,Nakaoka T,Moreno-Rodriguez R,Norris RA,Kern MJ,Eisenberg CA,Turner D,Markwald RR.The outflow tract of the heart is recruited from a novel heart-forming field.Dev Biol,2001,238(1):97-109.
    [17]Waldo KL,Kumiski DH,Wallis KT,Stadt HA,Hutson MR,Platt DH,Kirby ML.Conotruncal myocardium arises from a secondary heart field.Development,2001,128(16):3179-3188.
    [18]Kelly RG,Brown NA,Buckingham ME.The arterial pole of the mouse heart forms from fgf10-expressing cells in pharyngeal mesoderm.Dev Cell,2001,1(3):435-440.
    [19]Rana MS,Théveniau-Ruissy M,De Bono C,Mesbah K,Francou A,Rammah M,Domínguez JN,Roux M,Laforest B,Anderson RH,Mohun T,Zaffran S,Christoffels VM,Kelly RG.Tbx1 coordinates addition of posterior second heart field progenitor cells to the arterial and venous poles of the heart.Circ Res,2014,115(9):790-799.
    [20]Domínguez JN,Meilhac SM,Bland YS,Buckingham ME,Brown NA.Asymmetric fate of the posterior part of the second heart field results in unexpected left/right contributions to both poles of the heart.Circ Res,2012,111(10):1323-1335.
    [21]Rochais F,Mesbah K,Kelly RG.Signaling pathways controlling second heart field development.Circ Res,2009,104(8):933-942.
    [22]Cai CL,Liang X,Shi Y,Chu PH,Pfaff SL,Chen J,Evans S.Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart.Dev Cell,2003,5(6):877-889.
    [23]Chen L,Fulcoli FG,Tang S,Baldini A.Tbx1 regulates proliferation and differentiation of multipotent heart progenitors.Circ Res,2009,105(9):842-851.
    [24]Guo C,Sun Y,Zhou B,Adam RM,Li X,Pu WT,Morrow BE,Moon A,Li X.A tbx1-six1/eya1-fgf8genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis.J Clin Invest,2011,121(4):1585-1595.
    [25]Ilagan R,Abu-Issa R,Brown D,Yang YP,Jiao K,Schwartz RJ,Klingensmith J,Meyers EN.Fgf8 is required for anterior heart field development.Development,2006,133(12):2435-2445.
    [26]Robertson EJ,Charatsi I,Joyner CJ,Koonce CH,Morgan M,Islam A,Paterson C,Lejsek E,Arnold SJ,Kallies A,Nutt SL,Bikoff EK.Blimp1 regulates development of the posterior forelimb,caudal pharyngeal arches,heart and sensory vibrissae in mice.Development,2007,134(24):4335-4345.
    [27]Chhabra ES,Higgs HN.The many faces of actin:Matching assembly factors with cellular structures.Nat Cell Biol,2007,9(10):1110-1121.
    [28]Blanchoin L,Boujemaa-Paterski R,Sykes C,Plastino J.Actin dynamics,architecture,and mechanics in cell motility.Physiol Rev,2014,94(1):235-263.
    [29]Svitkina T.The actin cytoskeleton and actin-based motility.Cold Spring Harb Perspect Biol,2018,10(1).
    [30]Callan-Jones AC,Voituriez R.Actin flows in cell migration:from locomotion and polarity to trajectories.Curr Opin Cell Biol,2016,38:12-17.
    [31]Inagaki N,Katsuno H.Actin waves:origin of cell polarization and migration?Trends Cell Biol,2017,27(7):515-526.
    [32]Allard J,Mogilner A.Traveling waves in actin dynamics and cell motility.Curr Opin Cell Biol,2013,25(1):107-115.
    [33]Sun SC,Kim NH.Molecular mechanisms of asymmetric division in oocytes.Microsc Microanal,2013,19(4):883-897.
    [34]Yu XJ,Yi Z,Gao Z,Qin D,Zhai Y,Chen X,Ou-Yang Y,Wang ZB,Zheng P,Zhu MS,Wang H,Sun QY,Dean J,Li L.The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics.Nat Commun,2014,5:4887.
    [35]Engl W,Arasi B,Yap LL,Thiery JP,Viasnoff V.Actin dynamics modulate mechanosensitive immobilization of e-cadherin at adherens junctions.Nat Cell Biol,2014,16(6):587-594.
    [36]Olson EN,Nordheim A.Linking actin dynamics and gene transcription to drive cellular motile functions.Nat Rev Mol Cell Biol,2010,11(5):353-365.
    [37]Pollard TD,Borisy GG.Cellular motility driven by assembly and disassembly of actin filaments.Cell,2003,112(4):453-465.
    [38]Pollard TD,Blanchoin L,Mullins RD.Molecular mechanisms controlling actin filament dynamics in nonmuscle cells.Annu Rev Biophys Biomol Struct,2000,29:545-576.
    [39]Paavilainen VO,Bertling E,Falck S,Lappalainen P.Regulation of cytoskeletal dynamics by actin-monomerbinding proteins.Trends Cell Biol,2004,14(7):386-394.
    [40]Pollard TD,Beltzner CC.Structure and function of the arp2/3 complex.Curr Opin Struct Biol,2002,12(6):768-774.
    [41]Insall RH,Machesky LM.Actin dynamics at the leading edge:From simple machinery to complex networks.Dev Cell,2009,17(3):310-322.
    [42]Miki H,Takenawa T.Regulation of actin dynamics by wasp family proteins.J Biochem,2003,134(3):309-313.
    [43]Stradal TE,Rottner K,Disanza A,Confalonieri S,Innocenti M,Scita G.Regulation of actin dynamics by wasp and wave family proteins.Trends Cell Biol,2004,14(6):303-311.
    [44]Sagot I,Rodal AA,Moseley J,Goode BL,Pellman D.An actin nucleation mechanism mediated by bni1 and profilin.Nat Cell Biol,2002,4(8):626-631.
    [45]Kovar DR,Pollard TD.Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces.Proc Natl Acad Sci USA,2004,101(41):14725-14730.
    [46]Bamburg JR.Proteins of the adf/cofilin family:essential regulators of actin dynamics.Annu Rev Cell Dev Biol,1999,15:185-230.
    [47]Andrianantoandro E,Pollard TD.Mechanism of actin filament turnover by severing and nucleation at different concentrations of adf/cofilin.Mol Cell,2006,24(1):13-23.
    [48]Bernstein BW,Bamburg JR.Adf/cofilin:a functional node in cell biology.Trends Cell Biol,2010,20(4):187-195.
    [49]Ono S.Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1:new blades for twisted filaments.Biochemistry,2003,42(46):13363-13370.
    [50]Nadkarni AV,Brieher WM.Aip1 destabilizes cofilin-saturated actin filaments by severing and accelerating monomer dissociation from ends.Curr Biol,2014,24(23):2749-2757.
    [51]Rottner K,Stradal TE.Actin dynamics and turnover in cell motility.Curr Opin Cell Biol,2011,23(5):569-578.
    [52]Keller R.Cell migration during gastrulation.Curr Opin Cell Biol,2005,17(5):533-541.
    [53]Montell DJ.Morphogenetic cell movements:diversity from modular mechanical properties.Science,2008,322(5907):1502-1505.
    [54]Shaw TJ,Martin P.Wound repair:a showcase for cell plasticity and migration.Curr Opin Cell Biol,2016,42:29-37.
    [55]Shaw TJ,Martin P.Wound repair at a glance.J Cell Sci,2009,122(Pt 18):3209-3213.
    [56]Nourshargh S,Alon R.Leukocyte migration into inflamed tissues.Immunity,2014,41(5):694-707.
    [57]Weninger W,Biro M,Jain R.Leukocyte migration in the interstitial space of non-lymphoid organs.Nat Rev Immunol,2014,14(4):232-246.
    [58]Lauffenburger DA,Horwitz AF.Cell migration:a physically integrated molecular process.Cell,1996,84(3):359-369.
    [59]Mitchison TJ,Cramer LP.Actin-based cell motility and cell locomotion.Cell,1996,84(3):371-379.
    [60]Zaidel-Bar R,Zhenhuan G,Luxenburg C.The contractome-a systems view of actomyosin contractility in non-muscle cells.J Cell Sci,2015,128(12):2209-2217.
    [61]Pandya P,Orgaz JL,Sanz-Moreno V.Actomyosin contractility and collective migration:may the force be with you.Curr Opin Cell Biol,2017,48:87-96.
    [62]Pantaloni D,Le Clainche C,Carlier MF.Mechanism of actin-based motility.Science,2001,292(5521):1502-1506.
    [63]Carlier MF,Pernier J,Montaville P,Shekhar S,Kühn S,Cytoskeleton Dynamics and Motility Group.Control of polarized assembly of actin filaments in cell motility.Cell Mol Life Sci,2015,72(16):3051-3067.
    [64]Ono K,Ono S.Actin-adf/cofilin rod formation in caenorhabditis elegans muscle requires a putative f-actin binding site of adf/cofilin at the c-terminus.Cell Motil Cytoskel,2009,66(7):398-408.
    [65]Squire JM.Architecture and function in the muscle sarcomere.Curr Opin Struc Biol,1997,7(2):247-257.
    [66]Clark KA,McElhinny AS,Beckerle MC,Gregorio CC.Striated muscle cytoarchitecture:an intricate web of form and function.Annu Rev Cell Dev Biol,2002,18:637-706.
    [67]Sparrow JC,Sch?ck F.The initial steps of myofibril assembly:integrins pave the way.Nat Rev Mol Cell Biol,2009,10(4):293-298.
    [68]Ono S.Dynamic regulation of sarcomeric actin filaments in striated muscle.Cytoskeleton(Hoboken),2010,67(11):677-692.
    [69]Sanger JW,Kang S,Siebrands CC,Freeman N,Du A,Wang J,Stout AL,Sanger JM.How to build a myofibril.J Muscle Res Cell Motil,2005,26(6-8):343-354.
    [70]Sanger JW,Wang J,Fan Y,White J,Sanger JM.Assembly and dynamics of myofibrils.J Biomed Biotechnol,2010,2010:858606.
    [71]Shimizu N,Obinata T.Actin concentration and monomer-polymer ratio in developing chicken skeletal muscle.J Biochem,1986,99(3):751-759.
    [72]Dome JS,Mittal B,Pochapin MB,Sanger JM,Sanger JW.Incorporation of fluorescently labeled actin and tropomyosin into muscle cells.Cell Differ,1988,23(1-2):37-52.
    [73]Imanaka-Yoshida K,Sanger JM,Sanger JW.Contractile protein dynamics of myofibrils in paired adult rat cardiomyocytes.Cell Motil Cytoskeleton,1993,26(4):301-312.
    [74]Shimada Y,Suzuki H,Konno A.Dynamics of actin in cardiac myofibrils and fibroblast stress fibers.Cell Struct Funct,1997,22(1):59-64.
    [75]Suzuki H,Komiyama M,Konno A,Shimada Y.Exchangeability of actin in cardiac myocytes and fibroblasts as determined by fluorescence photobleaching recovery.Tissue Cell,1998,30(2):274-280.
    [76]Littlefield R,Almenar-Queralt A,Fowler VM.Actin dynamics at pointed ends regulates thin filament length in striated muscle.Nat Cell Biol,2001,3(6):544-551.
    [77]Wang J,Shaner N,Mittal B,Zhou Q,Chen J,Sanger JM,Sanger JW.Dynamics of z-band based proteins in developing skeletal muscle cells.Cell Motil Cytoskel,2005,61(1):34-48.
    [78]Skwarek-Maruszewska A,Hotulainen P,Mattila PK,Lappalainen P.Contractility-dependent actin dynamics in cardiomyocyte sarcomeres.J Cell Sci,2009,122(Pt12):2119-2126.
    [79]Littlefield R,Fowler VM.Defining actin filament length in striated muscle:rulers and caps or dynamic stability?Annu Rev Cell Dev Biol,1998,14:487-525.
    [80]Littlefield RS,Fowler VM.Thin filament length regulation in striated muscle sarcomeres:pointed-end dynamics go beyond a nebulin ruler.Semin Cell Dev Biol,2008,19(6):511-519.
    [81]Schafer DA,Hug C,Cooper JA.Inhibition of capz during myofibrillogenesis alters assembly of actin filaments.J Cell Biol,1995,128(1-2):61-70.
    [82]Hart MC,Cooper JA.Vertebrate isoforms of actin capping protein beta have distinct functions in vivo.JCell Biol,1999,147(6):1287-1298.
    [83]Gregorio CC,Weber A,Bondad M,Pennise CR,Fowler VM.Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes.Nature,1995,377(6544):83-86.
    [84]Sussman MA,BaquéS,Uhm CS,Daniels MP,Price RL,Simpson D,Terracio L,Kedes L.Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils.Circ Res,1998,82(1):94-105.
    [85]Gokhin DS,Ochala J,Domenighetti AA,Fowler VM.Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.Development,2015,142(24):4351-4362.
    [86]Nworu CU,Kraft R,Schnurr DC,Gregorio CC,Krieg PA.Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis.J Cell Sci,2015,128(2):239-250.
    [87]McElhinny AS,Schwach C,Valichnac M,Mount-Patrick S,Gregorio CC.Nebulin regulates the assembly and lengths of the thin filaments in striated muscle.J Cell Biol,2005,170(6):947-957.
    [88]Bang ML,Li X,Littlefield R,Bremner S,Thor A,Knowlton KU,Lieber RL,Chen J.Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle.J Cell Biol,2006,173(6):905-916.
    [89]Witt CC,Burkart C,Labeit D,McNabb M,Wu Y,Granzier H,Labeit S.Nebulin regulates thin filament length,contractility,and z-disk structure in vivo.Embo J,2006,25(16):3843-3855.
    [90]Pappas CT,Krieg PA,Gregorio CC.Nebulin regulates actin filament lengths by a stabilization mechanism.JCell Biol,2010,189(5):859-870.
    [91]Ono S,Ono K.Tropomyosin inhibits adf/cofilindependent actin filament dynamics.J Cell Biol,2002,156(6):1065-1076.
    [92]Yu R,Ono S.Dual roles of tropomyosin as an F-actin stabilizer and a regulator of muscle contraction in caenorhabditis elegans body wall muscle.Cell Motil Cytoskel,2006,63(11):659-672.
    [93]Kremneva E,Makkonen MH,Skwarek-Maruszewska A,Gateva G,Michelot A,Dominguez R,Lappalainen P.Cofilin-2 controls actin filament length in muscle sarcomeres.Dev Cell,2014,31(2):215-226.
    [94]Chatzifrangkeskou M,Yadin D,Marais T,Chardonnet S,Cohen-Tannoudji M,Mougenot N,Schmitt A,Crasto S,Di Pasquale E,Macquart C,Tanguy Y,Jebeniani I,Pucéat M,Morales Rodriguez B,Goldmann WH,Dal Ferro M,Biferi MG,Knaus P,Bonne G,Worman HJ,Muchir A.Cofilin-1 phosphorylation catalyzed by erk1/2alters cardiac actin dynamics in dilated cardiomyopathy caused by lamin a/c gene mutation.Hum Mol Genet,2018,27(17):3060-3078.
    [95]Ono S.The caenorhabditis elegans unc-78 gene encodes a homologue of actin-interacting protein 1 required for organized assembly of muscle actin filaments.J Cell Biol,2001,152(6):1313-1319.
    [96]Mohri K,Ono K,Yu R,Yamashiro S,Ono S.Enhancement of actin-depolymerizing factor/cofilindependent actin disassembly by actin-interacting protein1 is required for organized actin filament assembly in the caenorhabditis elegans body wall muscle.Mol Biol Cell,2006,17(5):2190-2199.
    [97]Yuen M,Sandaradura SA,Dowling JJ,Kostyukova AS,Moroz N,Quinlan KG,Lehtokari VL,Ravenscroft G,Todd EJ,Ceyhan-Birsoy O,Gokhin DS,Maluenda J,Lek M,Nolent F,Pappas CT,Novak SM,D'Amico A,Malfatti E,Thomas BP,Gabriel SB,Gupta N,Daly MJ,Ilkovski B,Houweling PJ,Davidson AE,Swanson LC,Brownstein CA,Gupta VA,Medne L,Shannon P,Martin N,Bick DP,Flisberg A,Holmberg E,Van den Bergh P,Lapunzina P,Waddell LB,Sloboda DD,Bertini E,Chitayat D,Telfer WR,Laquerrière A,Gregorio CC,Ottenheijm CA,B?nnemann CG,Pelin K,Beggs AH,Hayashi YK,Romero NB,Laing NG,Nishino I,Wallgren-Pettersson C,Melki J,Fowler VM,MacArthur DG,North KN,Clarke NF.Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy.J Clin Invest,2014,124(11):4693-4708.
    [98]Chereau D,Boczkowska M,Skwarek-Maruszewska A,Fujiwara I,Hayes DB,Rebowski G,Lappalainen P,Pollard TD,Dominguez R.Leiomodin is an actin filament nucleator in muscle cells.Science,2008,320(5873):239-243.
    [99]Tsukada T,Pappas CT,Moroz N,Antin PB,Kostyukova AS,Gregorio CC.Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle.J Cell Sci,2010,123(Pt 18):3136-3145.
    [100]Taniguchi K,Takeya R,Suetsugu S,Kan-O M,Narusawa M,Shiose A,Tominaga R,Sumimoto H.Mammalian formin fhod3 regulates actin assembly and sarcomere organization in striated muscles.J Biol Chem,2009,284(43):29873-29881.
    [101]Yuan B,Wan P,Chu D,Nie J,Cao Y,Luo W,Lu S,Chen J,Yang Z.A cardiomyocyte-specific wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice.Am J Pathol,2014,184(7):1967-1980.
    [102]Hu J,Shi Y,Xia M,Liu Z,Zhang R,Luo H,Zhang T,Yang Z,Yuan B.Wdr1-regulated actin dynamics is required for outflow tract and right ventricle development.Dev Biol,2018,438(2):124-137.
    [103]Clarkson E,Costa CF,Machesky LM.Congenital myopathies:diseases of the actin cytoskeleton.J Pathol,2004,204(4):407-417.
    [104]Agrawal PB,Greenleaf RS,Tomczak KK,Lehtokari VL,Wallgren-Pettersson C,Wallefeld W,Laing NG,Darras BT,Maciver SK,Dormitzer PR,Beggs AH.Nemaline myopathy with minicores caused by mutation of the cfl2gene encoding the skeletal muscle actin-binding protein,cofilin-2.Am J Hum Genet,2007,80(1):162-167.
    [105]Ockeloen CW,Gilhuis HJ,Pfundt R,Kamsteeg EJ,Agrawal PB,Beggs AH,Dara Hama-Amin A,Diekstra A,Knoers NV,Lammens M,van Alfen N.Congenital myopathy caused by a novel missense mutation in the cfl2 gene.Neuromuscul Disord,2012,22(7):632-639.
    [106]Ilkovski B,Cooper ST,Nowak K,Ryan MM,Yang N,Schnell C,Durling HJ,Roddick LG,Wilkinson I,Kornberg AJ,Collins KJ,Wallace G,Gunning P,Hardeman EC,Laing NG,North KN.Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene.Am J Hum Genet,2001,68(6):1333-1343.
    [107]Feng JJ,Marston S.Genotype-phenotype correlations in acta1 mutations that cause congenital myopathies.Neuromuscul Disord,2009,19(1):6-16.
    [108]Laing NG,Dye DE,Wallgren-Pettersson C,Richard G,Monnier N,Lillis S,Winder TL,Lochmüller H,Graziano C,Mitrani-Rosenbaum S,Twomey D,Sparrow JC,Beggs AH,Nowak KJ.Mutations and polymorphisms of the skeletal muscle alpha-actin gene(acta1).Hum Mutat,2009,30(9):1267-1277.
    [109]Friedman B,Simpson K,Tesi-Rocha C,Zhou D,Palmer CA,Suchy SF.Novel large deletion in the acta1 gene in a child with autosomal recessive nemaline myopathy.Neuromuscul Disord,2014,24(4):331-334.
    [110]Jain RK,Jayawant S,Squier W,Muntoni F,Sewry CA,Manzur A,Quinlivan R,Lillis S,Jungbluth H,Sparrow JC,Ravenscroft G,Nowak KJ,Memo M,Marston SB,Laing NG.Nemaline myopathy with stiffness and hypertonia associated with an acta1 mutation.Neurology,2012,78(14):1100-1103.
    [111]Mroczek M,Kabzińska D,Chrzanowska KH,Pronicki M,Kochanski A.A novel tpm2 gene splice-site mutation causes severe congenital myopathy with arthrogryposis and dysmorphic features.J Appl Genet,2017,58(2):199-203.
    [112]Marttila M,Lehtokari VL,Marston S,Nyman TA,Barnerias C,Beggs AH,Bertini E,Ceyhan-Birsoy O,Cintas P,Gerard M,Gilbert-Dussardier B,Hogue JS,Longman C,Eymard B,Frydman M,Kang PB,Klinge L,Kolski H,Lochmüller H,Magy L,Manel V,Mayer M,Mercuri E,North KN,Peudenier-Robert S,Pihko H,Probst FJ,Reisin R,Stewart W,Taratuto AL,de Visser M,Wilichowski E,Winer J,Nowak K,Laing NG,Winder TL,Monnier N,Clarke NF,Pelin K,Gr?nholm M,Wallgren-Pettersson C.Mutation update and genotype-phenotype correlations of novel and previously described mutations in tpm2 and tpm3 causing congenital myopathies.Hum Mutat,2014,35(7):779-790.
    [113]Fox MD,Carson VJ,Feng HZ,Lawlor MW,Gray JT,Brigatti KW,Jin JP,Strauss KA.Tnnt1 nemaline myopathy:Natural history and therapeutic frontier.Hum Mol Genet,2018,27(18):3272-3282.
    [114]Konersman CG,Freyermuth F,Winder TL,Lawlor MW,Lagier-Tourenne C,Patel SB.Novel autosomal dominant tnnt1 mutation causing nemaline myopathy.Mol Genet Genomic Med,2017,5(6):678-691.
    [115]Abdulhaq UN,Daana M,Dor T,Fellig Y,Eylon S,Schuelke M,Shaag A,Elpeleg O,Edvardson S.Nemaline body myopathy caused by a novel mutation in troponin t1(tnnt1).Muscle Nerve,2016,53(4):564-569.
    [116]Piga D,Magri F,Ronchi D,Corti S,Cassandrini D,Mercuri E,Tasca G,Bertini E,Fattori F,Toscano A,Messina S,Moroni I,Mora M,Moggio M,Colombo I,Giugliano T,Pane M,Fiorillo C,D'Amico A,Bruno C,Nigro V,Bresolin N,Comi GP.New mutations in neb gene discovered by targeted next-generation sequencing in nemaline myopathy italian patients.J Mol Neurosci,2016,59(3):351-359.
    [117]Lehtokari VL,Pelin K,Sandbacka M,Ranta S,Donner K,Muntoni F,Sewry C,Angelini C,Bushby K,van den Bergh P,Iannaccone S,Laing NG,Wallgren-Pettersson C.Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy.Hum Mutat,2006,27(9):946-956.
    [118]Tsunoda K,Yamashita T,Motokura E,Takahashi Y,Sato K,Takemoto M,Hishikawa N,Ohta Y,Nishikawa A,Nishino I,Abe K.A patient with slowly progressive adult-onset nemaline myopathy and novel compound heterozygous mutations in the nebulin gene.J Neurol Sci,2017,373:254-257.
    [119]Li D,Sinha T,Ajima R,Seo HS,Yamaguchi TP,Wang J.Spatial regulation of cell cohesion by wnt5a during second heart field progenitor deployment.Dev Biol,2016,412(1):18-31.
    [120]Uribe V,Badía-Careaga C,Casanova JC,Domínguez JN,de la Pompa JL,Sanz-Ezquerro JJ.Arid3b is essential for second heart field cell deployment and heart patterning.Development,2014,141(21):4168-4181.
    [121]Waldo KL,Hutson MR,Ward CC,Zdanowicz M,Stadt HA,Kumiski D,Abu-Issa R,Kirby ML.Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart.Dev Biol,2005,281(1):78-90.
    [122]Campos Y,Qiu X,Gomero E,Wakefield R,Horner L,Brutkowski W,Han YG,Solecki D,Frase S,Bongiovanni A,d'Azzo A.Alix-mediated assembly of the actomyosintight junction polarity complex preserves epithelial polarity and epithelial barrier.Nat Commun,2016,7:11876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700