新型生物基苯并噁嗪的合成及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Properties of a Novel Bio-based Benzoxazine
  • 作者:殷平 ; 闫红强 ; 程捷 ; 方征平
  • 英文作者:YIN Ping;YAN Hongqiang;CHENG Jie;FANG Zhengping;Laboratory of Polymer Material and Engineering,Ningbo Institute of Technology,Zhejiang University;Chemical Engineering and Bioengineering,Zhejiang University;
  • 关键词:生物基苯并噁嗪 ; 酚酞糠胺型苯并噁嗪树脂 ; 固化反应 ; 耐热性能 ; 阻燃性能
  • 英文关键词:Bio-based benzoxazine;;Phenolphthalein-furfuramine-benzoxazine resin;;Curing reaction;;Thermal property;;Flame retardancy
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:浙江大学宁波理工学院高分子材料与共混实验室;浙江大学化学工程与生物工程学院;
  • 出版日期:2019-05-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:浙江省自然科学基金(批准号:LY19E030004);; 宁波市自然科学基金(批准号:2018A610184);; 宁波市工业重大专项(批准号:2015B11005)资助~~
  • 语种:中文;
  • 页:GDXH201905030
  • 页数:9
  • CN:05
  • ISSN:22-1131/O6
  • 分类号:227-235
摘要
以生物基糠胺、酚酞和多聚甲醛为原料,制备了一种新型生物基苯并噁嗪树脂——酚酞糠胺型苯并嗪树脂(PPTL-F-BOZ),采用FTIR,1H NMR和13C NMR等手段对其单体PTL-F-BOZ的结构进行了表征,并对其固化反应、耐热和阻燃性能进行分析.结果表明,与传统的化石基双酚型苯并噁嗪——双酚A苯胺型苯并噁嗪(BPA-A-BOZ)相比,PTL-F-BOZ显示出较低的固化反应温度,且糠胺中呋喃环的存在会增加聚合物的交联密度,并减缓苯氧结构向苯酚结构的重排反应,致使其在DSC曲线中出现了2个固化峰. PPTL-FBOZ树脂具有较高的T5%(质量损失5%的温度)和800℃的残炭率,其极限氧指数(LOI)高达36. 2%,在垂直燃烧中达到V-0等级,表现出优异的热稳定性和阻燃性能.
        A novel bio-based benzoxazine resin(phenolphthalein-furfuramine-benzoxazine,PTL-F-BOZ),used bio-based furfurylamine,phenolphthalein,and paraformaldehyde as raw materials,was synthesized and characterized by Fourier transform infrared spectroscopy(FTIR),nuclear magnetic resonance(1 H NMR and13 C NMR). The curing, thermal and flame retardant properties were analyzed by differential scanning calorimetric(DSC),thermogravimetric analyzer(TG),limiting oxygen index(LOI),vertical burning test,microscale combustion calorimetry(MCC),cone calorimeter(Cone) and scanning electron microscope(SEM).The DSC curve of PTL-F-BOZ showed a two-stage curing with two maxima at 224 and 251 ℃ respectively,and had lower curing temperature than that of the traditional fossil-based bisphenol benzoxazine bisphenol A-aniline benzoxazine(bisphenol A-aniline-benzoxazine, BPA-A-BOZ). The presence of the furan ring in the furfurylamine increased the cross-linking density of polymer,retarded the rearrangement reaction from the phenoxy structure to the phenol structure,and resulted in two curing peaks in the DSC curve of PTL-F-BOZ. Under nitrogen and air atmospheres,the temperatures of 5% mass loss(T5%) for PPTL-F-BOZ resin were 380 and 370 ℃,respectively and the residual chars at 800 ℃ were 63. 0% and 10. 5%,respectively. Compared with PBPA-A-BOZ resin,PPTL-F-BOZ resin both possessed higher T5%and residual char of 800 ℃. From the DTG curve,the maximum mass loss rates of two decomposition stage(Peak 1 and Peak 2 values) of PPTL-FBOZ resin were 0. 67%/min and 3. 28%/min,which were only 7. 38% and 63. 44% of PBPA-A-BOZ(9. 07%/min and 5. 17%/min) under nitrogen atmosphere,and those were also the same under air atmosphere. LOI of PPTL-F-BOZ resin was 36. 2%,which was higher than that of PBPA-A-BOZ resin. Meanwhile,in the UL-94 test,PPTL-F-BOZ resin extinguished quickly and released less smoke during combustion process,and the original morphology was kept well and a stable carbon layer was formed after burning. Its first ignition time(t1) and second ignition time(t2) were 1. 4 and 8. 5 s,respectively,far smaller than the maximum permissible values of 10 s,and a UL94 V-0 rating was also achieved. Hence,PPTL-F-BOZ resin showed excellent thermal and flame retardant properties.
引文
[1] Chernykh A.,Agag T.,Ishida H.,Macromolecules,2009,42(14),5121—5127
    [2] Xu M. Z.,Jia K.,Liu X. B.,High Perform. Polym.,2016,28(10),1161—1171
    [3] Kim H. J.,Brunovska Z.,Ishida H.,Polymer,1999,40(7),1815—1822
    [4] Xu Y.,Dai J.,Ran Q. C.,Gu Y.,Polymer,2017,123,232—239
    [5] Yan H. Q.,Wang H. Q.,Cheng J.,Fang Z. P.,Wang H.,RSC Adv.,2015,5(24),18538—18545
    [6] Jasinska L.,Villani M.,Wu J.,van Es D.,Klop E.,Rastogi S.,Koning C. E.,Macromolecules,2011,44(9),3458—3466
    [7] Hashimoto K.,Hashimoto N.,Kamaya T.,Yoshioka J.,Okawa H.,J. Polym. Sci. A,2011,49(4),976—985
    [8] del Rio E.,Lligadas G.,Ronda J. C.,Galia M.,Meier M. A. R.,Cadiz V.,J. Polym. Sci. A,2011,49(2),518—525
    [9] Thirukumaran P.,Sathiyamoorthi R.,Parveen A. S.,Sarojadevi M.,Polym. Compos.,2016,37(2),573—582
    [10] Wang C. F.,Sun J. Q.,Liu X. D.,Sudo A.,Endo T.,Green Chemistry,2012,14(10),2799—2806
    [11] Cao H. W.,Xu R. W.,Liu H.,Yu D. S.,Des. Monomers Polym.,2006,9(4),369—382
    [12] National Center for Quality Supervision and Inspection of Synthetic Resins,Plastic-Determination of Burning Behaviour by Oxygen Index,Part 2:Ambient-temperature Test,China Standard Press,Beijing,2009(国家合成树脂质量监督检验中心. GB/T2406.2-2009,塑料用氧指数法测定燃烧行为,第2部分:室温试验,北京:中国标准出版社,2009)
    [13] National Center for Quality Supervision and Inspection of Synthetic Resins,Plastic-Detemination of Burning Characteristics:Horizontal and Vestical Test,China Standard Press,Beijing,2008(国家合成树脂质量监督检验中心. GB/T2408-2008,塑料燃烧性能的测定:水平法和垂直法,北京:中国标准出版社,2008)
    [14] Yang P.,Gu Y.,J. Polym. Res.,2011,18(6),1725—1733
    [15] Li S. F.,Yan S. L.,Yu J. Y.,Yu B.,J. Appl. Polym. Sci.,2011,122(5),2843—2848
    [16] Li S. F.,Yan S. L.,RSC Adv.,2015,5(76),61808—61814
    [17] Shukla S.,Mahata A.,Pathak B.,Lochab B.,RSC Adv.,2015,5(95),78071—78080
    [18] Liu Y. L.,Chou C. I.,J. Polym. Sci. A,2005,43(21),5267—5282
    [19] Rucigaj A.,Gradisar S.,Krajnc M.,E-Polymers,2016,16(3),199—206
    [20] Wang L. J.,Xie X. L.,Su S. P.,Feng J. X.,Wilkie C. A.,Polym. Degrad. Stabil.,2010,95(4),572—578
    [21] Lu H. D.,Wilkie C. A.,Polym. Degrad. Stabil.,2010,95(4),564—571
    [22] Wang X.,Rathore R.,Songtipya P.,Jimenez-Gasco M. d M.,Manias E.,Wilkie C. A.,Polym. Degrad. Stabil.,2011,96(3),301—313
    [23] Yang C. Q.,He Q.,Lyon R. E.,Hu Y.,Polym. Degrad. Stabil.,2010,95(2),108—115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700