山梨醇对凡纳滨对虾无水运输中呼吸和能量代谢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Sorbitol on Respiratory and Energy Metabolism in Pacific White Leg Shrimp Litopenaeus vannamei during Air-exposure Transportation
  • 作者:查蒙 ; 管维良 ; 茅林春
  • 英文作者:ZHA Meng;GUAN Wei-liang;MAO Lin-chun;College of Biosystems Engineering and Food Science,Zhejiang University;
  • 关键词:凡纳滨对虾 ; 无水运输 ; 呼吸代谢 ; 能量代谢 ; 山梨醇
  • 英文关键词:Litopenaeus vannamei;;air-exposure transportation;;respiratory metabolism;;energy metabolism;;sorbitol
  • 中文刊名:SPYK
  • 英文刊名:Food Research and Development
  • 机构:浙江大学生物系统工程与食品科学学院;
  • 出版日期:2019-01-21
  • 出版单位:食品研究与开发
  • 年:2019
  • 期:v.40;No.350
  • 基金:浙江省重大科技专项重点农业项目(2015C02046)
  • 语种:中文;
  • 页:SPYK201901009
  • 页数:7
  • CN:01
  • ISSN:12-1231/TS
  • 分类号:39-45
摘要
将驯化后体质量(12.86±0.80)g的凡纳滨对虾(Litopenaeus vannamei)随机分为两组,分别在13℃的3.5%山梨醇溶液或清水(对照)中浸泡3 min,至全部对虾侧卧水底呈休眠状态后,取30只一组装入聚氯乙烯(polyvinyl chloride,PVC)袋(220 mm×320 mm),充纯氧后密封,置于15℃的恒温箱中无水运输。10小时后将全部对虾转移至的清水(20℃~25℃)中复苏。测定休眠5、10 h和复苏1 h状态下凡纳滨对虾血清血蓝蛋白、乳酸、葡萄糖浓度、乳酸脱氢酶(lactate dehydrogenase,LDH)、肝胰腺琥珀酸脱氢酶(succinate dehydrogenase,SDH)活力和肝糖原含量的变化,以探究山梨醇对凡纳滨对虾无水运输存活率的影响及其作用机理。结果发现,模拟无水运输10小时后,山梨醇组对虾存活率为88.89%,显著高于对照组(71.11%)(P <0.05);休眠状态下,山梨醇组血蓝蛋白、乳酸、血糖浓度和SDH、LDH活力显著高于对照组(P <0.05),肝糖原浓度显著低于对照组(P <0.05);复苏1小时后,两组对虾的乳酸、血糖浓度及对照组SDH活力仍与新鲜状态差异显著(P <0.05),其他参数恢复正常水平。结果表明,3.5%山梨醇可提高对虾有氧和无氧呼吸强度及存活率,缓解低、缺氧和能量不足的胁迫。
        Shrimps(Litopenaeus vannamei)weighting(12.86±0.80)g were randomly divided into two groups and immersed in 3.5 % sorbitol solution or clear water(control)at 13 ℃ for 3 min making them in dormancy. A group of 30 shrimps were placed in a polyvinyl chloride(PVC)bag(220 mm ×320 mm),sealing with 100 %oxygen. All of the shrimps subsequently put in a constant temperature box(15 ℃)for 5 h and 10 h dormancy,and recovered in the clear water(20 ℃-25 ℃)for 1 h after 10 hours dormancy. The contents of hemocyanin,lactate and glucose,and the activity of lactate dehydrogenase(LDH)in serum,as well as the glycogen content and the activity of succinate dehydrogenase(SDH)in hepatopancreas were investigated to interpret the effect and mechanism of sorbitol on the survival of shrimp during air-exposure transportation. The results showed that the survival rate of the sorbitol group was 88.89 %,significantly higher than that of control(71.1 %). Under the hibernation,the levels of Hc,lactate,glucose,and the activities of SDH and LDH in sorbitol group were significantly higher than those of control,except for the concentration of hepatic glycogen that was significantly lower than that of control. After 1 h of recovery,lactate and glucose levels and the SDH activity in all groups showed significantly different from that of fresh shrimps,however,the other parameters recovered to normal levels. It was concluded that 3.5 % sorbitol could increase the aerobic and anaerobic respiration and survival rate of shrimp,and relive the deficits of anoxia,hypoxia and energy.
引文
[1]郭云峰,赵文武.中国渔业统计年鉴[M].北京:中国农业出版社,2017:3
    [2]刘建勇,卓健辉.运输时间及水温对南美白对虾苗成活率的影响[J].水产养殖,2005(1):14-17
    [3]任红梅,万玉芳,李雪梅.青虾无水低温保活运输初探[J].科学养鱼,2015(5):50-51
    [4]米红波.鲫鱼和中国对虾的无水保活及冰温保鲜技术研究[D].杭州:浙江大学, 2014
    [5] Lorenzon S, Giulianini P G, Martinis M, et al. Stress effect of different temperatures and air exposure during transport on physiological profiles in the American lobster Homarus americanus[J]. Comparative Biochemistry&Physiology Part A Molecular&Integrative Physiology, 2007, 147(1):94-102
    [6] Pramod P K, Ramachandran A, Sajeevan T P, et al. Comparative efficacy of MS-222 and benzocaine as anaesthetics under simulated transport conditions of a tropical ornamental fish Puntius filamentosus(Valenciennes)[J]. Aquaculture Research, 2010, 41(2):309-314
    [7]杜浩,危起伟,杨德国,等. MS-222、丁香油、苯唑卡因对养殖美洲鲥幼鱼的麻醉效果[J].大连水产学院学报, 2007(1):20-26
    [8] Akbari S, Khoshnod M J, Rajaian H, et al. The use of eugenol as an anesthetic in simulated transportation of with Indian shrimp(Fenneropenaeus indicus)post larvae.[J]. Turkish Journal of Fisheries&Aquatic Sciences, 2010, 10(3):423-429
    [9] Yokoyama Y, Yoshikawa H, Ueno S, et al. Application of CO2-anesthesia combined with low temperature for long-term anesthesia in carp(Cyprinus carpio)[J]. Bulletin of the Japanese Society of Scientific Fisheries, 2008, 55(7):1203-1209
    [10] Kuhn D D, Choi M, Coyle S, et al. Developing and validating protocols for waterless shipping of live shrimp[C]. Seattle:Aquaculture America,2014
    [11] Taylor H H. The role of the gills and branchiostegites in gas exchange in a bimodally breathing crab, Holthuisana transversa:evidence for a facultative change in the distribution of the respiratory circulation[J]. Journal of Experimental Biology,1984(7):103-121
    [12]连春盎.干露胁迫对脊尾白虾呼吸代谢相关酶和低氧诱导因子的影响[D].上海:上海海洋大学, 2016
    [13] Nickerson K W, Holde K E V. A comparison of molluscan and arthropod hemocyanin—I. Circular dichroism and absorption spectra[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1971,39(4):855-872
    [14]李彦飞.注射病原菌、盐度变化对凡纳滨对虾血蓝蛋白合成、酚氧化酶活性的影响[D].青岛:中国海洋大学,2009
    [15]陶易凡,强俊,王辉,等.低pH胁迫对克氏原螯虾鳃和肝胰腺酶活力及组织结构的影响[J].中国水产科学,2016,23(6):1279-1289
    [16] Pillet M, Dupont-Prinet A, Chabot D, et al. Effects of exposure to hypoxia on metabolic pathways in northern shrimp(Pandalus borealis)and Greenland halibut(Reinhardtius hippoglossoides)[J]. Journal of Experimental Marine Biology&Ecology, 2016, 483:88-96
    [17]王兴强,马甡,董双林.虾蟹类生物能量学研究进展[J].海洋科学,2005, 29(10):65-69
    [18] So觡anez-Organis J G, Rodriguez-Armenta M, Leal-Rubio B, et al.Alternative splicing generates two lactate dehydrogenase subunits differentially expressed during hypoxia via HIF-1 in the shrimp Litopenaeus vannamei[J]. Biochimie, 2012, 94(5):1250-1260
    [19] Holman J D, Hand S C. Metabolic depression is delayed and mitochondrial impairment averted during prolonged anoxia in the ghost shrimp, Lepidophthalmus louisianensis(Schmitt, 1935)[J]. Journal of Experimental Marine Biology&Ecology, 2009, 376(2):85-93
    [20]管越强,李利,王慧春,等.低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响[J].河北大学学报:自然科学版, 2010,30(3):301-306
    [21] Mauro N A, Malecha S R. The effects of hypoxia on blood pH and lactate levels in Macrobrachium rosenbergii(de man)[J]. Comparative Biochemistry&Physiology Part A Physiology, 1984, 77(4):627-630
    [22] Chandel N S, Mcclintock D S, Feliciano C E, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia:a mechanism of O2 sensing[J].Journal of Biological Chemistry, 2000, 275(33):25130-25138
    [23] Holman J D, Hand S C. Metabolic Depression is Delayed and Mitochondrial Impairment Averted during Prolonged Anoxia in the ghost shrimp, Lepidophthalmus louisianensis(Schmitt, 1935)[J]. Journal of Experimental Marine Biology&Ecology, 2009, 376(2):110-121
    [24] Holde K E V. Respiratory proteins of invertebrates:Structure, function and evolution[J]. Zoology, 1997, 100(4):287-297
    [25] Defur P L, Mangum C P, Reese J E. Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia[J]. Biological Bulletin, 1990, 178(1):46-54
    [26] Taylor H H, Anstiss J M. Copper and haemocyanin dynamics in aquatic invertebrates[J]. Marine&Freshwater Research, 1999, 50(8):907-931
    [27] Cheng W, Liu C H, Kuo C M. Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii,(de Man)[J]. Aquaculture, 2003, 220(1):843-856
    [28]张亚娟,王超,刘存歧,等.氨态氮和亚硝态氮对日本沼虾酚氧化酶活力及血蓝蛋白含量的影响[J].水产科学, 2010,29(1):31-34
    [29] Paschke K, Cumillaf J P, Loyola S, et al. Effect of dissolved oxygen level on respiratory metabolism, nutritional physiology, and immune condition of southern king crab Lithodes santolla,(Molina, 1782)(Decapoda, Lithodidae)[J]. Marine Biology, 2010, 157(1):7-18
    [30] Nery L E M, Santos E A. Carbohydrate metabolism during osmoregulation in Chasmagnathus granulata dana, 1851(crustacea, Decapoda)[J]. Comparative Biochemistry&Physiology Part B Comparative Biochemistry, 1993, 106(3):747-753
    [31] Dean J M, Vernberg F J. Effects of Temperature acclimation on some aspects of carbohydrate metabolism in Decapoda crustacea[J]. Biological Bulletin, 1965, 129(1):87-94
    [32] Webster S. Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress[J].Journal of Experimental Biology, 1996, 199(7):1579
    [33] Radziuk J. Sources of carbon in hepatic glycogen synthesis during absorption of an oral glucose load in humans[J]. Federation Proceedings, 1982, 41(1):110-116
    [34] Axelrod J, Reisine T D. Stress hormones:their interaction and regulation[J]. Science, 1984, 224(4648):452-459
    [35] Schmitt A C, Santos E A. Lipid and carbohydrate metabolism of the intertidal crab Chasmagnathus granulata, dana, 1851(Crustacea:Decapoda)during emersion[J]. Comparative Biochemistry&Physiology Part A Physiology, 1993, 106(2):329-336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700