基于“多链超分子柱”的侧链液晶高分子柱状相
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Columnar Phase of Side-chain Liquid Crystalline Polymers Based on “Multi-chain Column”
  • 作者:赵瑞颖 ; 蒋旭强 ; 郑军峰 ; 刘小青 ; 徐艳双 ; 杨爽 ; 陈尔强
  • 英文作者:Rui-ying Zhao;Xu-qiang Jiang;Jun-feng Zheng;Xiao-qing Liu;Yan-shuang Xu;Shuang Yang;Er-qiang Chen;Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering,Peking University;Academy for Advanced Interdisciplinary Studies, Peking University;College of Chemical Engineering, Nanjing Forestry University;
  • 关键词:侧链液晶聚合物 ; Hemiphasmid型液晶基元 ; 多链超分子柱 ; 柱内缠结 ; 形状记忆
  • 英文关键词:Side-chain liquid crystalline polymer;;Hemiphasmid mesogen;;Multi-chain column;;Intra-column entanglement;;Shape memory
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:北京分子科学国家研究中心高分子化学与物理教育部重点实验室软物质科学与工程中心北京大学化学与分子工程学院;北京大学前沿交叉学科研究院;南京林业大学化学工程学院;
  • 出版日期:2018-07-10 17:19
  • 出版单位:高分子学报
  • 年:2018
  • 基金:国家自然科学基金(基金号201474002,21634001);; 国家重点基础研究发展计划(973计划,项目号2011CB606004)资助
  • 语种:中文;
  • 页:GFXB201808003
  • 页数:14
  • CN:08
  • ISSN:11-1857/O6
  • 分类号:29-42
摘要
一些具有伸展构象的侧链液晶高分子,如甲壳型液晶高分子或树枝化高分子,可以经由分子链的平行排列而呈现柱状液晶相.一般认为,该类柱状相的基本结构单元是单根高分子链所形成的超分子柱.而以几根链组装形成的超分子柱,即"多链超分子柱",也可作为侧链液晶高分子柱状相的基本结构单元,但多年以来这一现象并未引起人们的重视.近期,我们以hemiphasmid型侧链液晶高分子为研究对象,阐明了"多链超分子柱"是侧链液晶高分子柱状相微相分离的一种重要形式.本文从hemiphasmid型侧链液晶高分子的柱状相结构分析、化学结构对"多链超分子柱"的影响、"多链超分子柱"模型的理论分析与预测、"多链超分子柱"的"柱内缠结"以及hemiphasmid型侧链液晶聚降冰片烯的功能性等若干方面,对基于"多链超分子柱"的侧链液晶高分子柱状相进行了介绍.我们认为,深入研究"多链超分子柱"性质,将拓展侧链液晶高分子的应用领域,加深对高分子物理基本问题的认识.
        Side-chain liquid crystalline polymer(SCLCP) can form columnar liquid crystalline(LC) phases, in addition to the conventional nematic and smectic phase. For the SCLCP containing the discotic mesogenic group attached to the main-chain through a flexible spacer, the columnar phase relies on the assembly of the discotic mesogens. On the other hand, the SCLCP with extended conformation, such as mesogen-jacketed LC polymers and dendronized polymers, can exhibit the columnar phase based on the parallel packing of the cylindrical chains.In this case, "single chain column " is considered to be the building block of the columnar phase in general.Recently, our work on hemiphasmid SCLCP demonstrates that the "multi-chain column" is also important for the columnar phases of SCLCP. Hemiphasmid SCLCP possesses the hemiphasmid side-chain composed of a rod-like mesogen linked with a half-disk end group. It can readily self-organize into columnar phases with a pretty lager lattice parameter(e.g., 5 – 10 nm). It is found that the number of repeating units(Zrep) packed in a column stratum with a thickness of ~ 0.4 nm is surprisingly large. As an example, for the hexagonal columnar phase with the a parameter of ~ 6 nm, the value of Zrep is ~ 10. Squeezing a chain segment with 10 repeating units into the 0.4 nmthick column stratum is physically unreasonable. The "unusual Zrep" indicates the existence of "multi-chain column" that consists of a bundle of chains(e.g., 4 – 5 chains) laterally associated together. We synthesized a series of hemiphasmid SCLCPs with different chemical structures. Various main-chains have been employed,including polystyrene, poly(methacrylate), polyacetylene, and polynorbornene. The hemiphasmid moieties can invoke different rod-like mesogens, and can be attached to the main-chain directly or via a flexible spacer. For all the samples obtained, we have verified that the "multi-chain column" is applicable. The formation of "multi-chain column " can be understood from the nano-segregation among the main-chain, the rod-like mesogen and the flexible tails. Theoretical analysis indicates that the "multi-chain column " is a structure of thermodynamic equilibrium. The number of chains in the column is dependent on the volume fraction of the rigid component of the SCLCP. We propose that the chains in the column can interlock and intertwine, resulting in the intra-column entanglement. This hypothesis is supported by the study of hemiphasmid side-chain polynorbornene, which illustrates that the intra-column entanglement can endow the polymer with properties of thermoplastic elastomer.Moreover, the polymer can further exhibit excellent multi-shape memory effect at high strain. We anticipate that the further study of the "multi-chain column", which has been overlooked for years, will deepen our understanding of some fundamental issues of the structure and dynamics of polymers, and will also help to explore the new properties and applications of SCLCPs.
引文
1Zhou Qifeng(周其凤),Wang Xinjiu(王新久).Liquid Crystalline Polymers(液晶高分子).Beijing(北京):Science Press(科学出版社),1994.1-167
    2Donald A,Windle A,Hanna S.Liquid Crystalline Polymers,Cambridge:Cambridge University Press,2006.1-356
    3Thünemann A F,Kubowicz S,Burger C,Watson M D,Tchebotareva N,Müllen K.J Am Chem Soc,2003,125:352-356
    4Laschat S,Baro A,Steinke N,Giesselmann F,H?gele C,Scalia G,Judele R,Kapatsina E,Sauer S,Schreivogel A,Tosoni M.Angew Chem Int Ed,2007,46:4832-4887
    5Mu B,Wu B,Pan S,Fang J,Chen D.Macromolecules,2015,48:2388-2398
    6Mu Bin(慕斌),Wu Bin(吴斌),Chen Dongzhong(谌东中).Acta Polymerica Sinica(高分子学报),2017,(10):1574-1590
    7Finkelmann H,Ringsdorf H,Wendorff J H.Makromol Chem,1978,179:273-276
    8Finkelmann H,Ringsdorf H,Siol W,Wendorff J H.Makromol Chem,1978,179:829-832
    9 Finkelmann H,Happ M,Portugal M,Ringsdorf H.Makromol Chem,1978,179:2541-2544
    10 Davidson P.Prog Polym Sci,1996,21:893-950
    11 Ungar G.Polymer,1993,34:2050-2059
    12 Zhou Q F,Li H M,Feng X D.Macromolecules,1987,20:233-234
    13 Hou Pingping(候平平),Zhang Zhenyu(张振宇),Ping Jing(平静),Shen Zhihao(沈志豪),Fan Xinghe(范星河),Zhou Qifeng(周其凤).Acta Polymerica Sinica(高分子学报),2017,(10):1591-1608
    14 Chen X F,Shen Z H,Wan X H,Fan X H,Chen E Q,Ma Y G,Zhou Q F.Chem Soc Rev,2010,39:3072-3101
    15 Liu Xuanbo(刘宣伯),Xu Jiaru(许佳儒),Zhao Yongfeng(赵永峰),Yang Shuang(杨爽),Fan Xinghe(范星河),Chen Erqiang(陈尔强).Acta Polymerica Sinica(高分子学报),2017,(10):1668-1678
    16 Yin X Y,Ye C,Ma X,Chen E Q,Qi X Y,Duan X F,Wan X H,Cheng S Z D,Zhou Q F.J Am Chem Soc,2003,125:6854-6855
    17 Ye C,Zhang H,Huang Y,Chen E Q,Lu Y,Shen D,Wan X H,Shen Z H,Cheng S Z D,Zhou Q F.Macromolecules,2004,37:7188-7196
    18 Tu H L,Wan X H,Liu Y X,Chen X F,Zhang D,Zhou Q F,Shen Z H,Ge J J,Jin S,Cheng S Z D.Macromolecules,2000,33:6315-6320
    19 Liu Xin(刘鑫),Zheng Xiaohui(郑晓慧),Liu Xiaoqing(刘小青),Zhao Ruiying(赵瑞颖),Zhao Tipeng(赵体鹏),Liu Chenyang(刘琛阳),Sun Pingchuan(孙平川),Chen Erqiang(陈尔强).Acta Polymerica Sinica(高分子学报),2017,(9):1506-1516
    20 Rudick J G,Percec V.Acc Chem Res,2008,41:1641-1652
    21 Percec V,Ahn C H,Cho W D,Jamieson A M,Kim J,Leman T,Schmidt M,Gerle M,M?ller M,Prokhorova S A,Sheiko S S,Cheng S Z D,Zhang A,Ungar G,Yeardley D J P.J Am Chem Soc,1998,120:8619-8631
    22 Percec V,Imam M R,Peterca M,Leowanawat P.J Am Chem Soc,2012,134:4408-4420
    23 Rosen B M,Wilson D A,Wilson C J,Peterca M,Won B C,Huang C,Lipski L R,Zeng X,Ungar G,Heiney P A,Percec V.J Am Chem Soc,2009,131:17500-17521
    24 Zheng J F,Liu X,Chen X F,Ren X K,Yang S,Chen E Q.ACS Macro Lett,2012,1:641-645
    25 Liu X Q,Wang J,Yang S,Chen E Q.ACS Macro Lett,2014,3:834-838
    26 Xu Y S,Shi D,Gu J,Lei Z,Xie H L,Zhao T P,Yang S,Chen E Q.Polym Chem,2016,7:462-473
    27 Zhao R Y,Zhao T P,Jiang X Q,Liu X,Shi D,Liu C Y,Yang S,Chen E Q.Adv Mater,2017,29:1605908
    28 Nguyen H T,Destrade C,Malthécte J.Adv Mater,1997,9:375-388
    29 Levelut A M,Malthěte J,Destrade C,Tinh N H.Liq Cryst,1987,2:877-888
    30 Gharbia M,Gharbi A,Nguyen H T,Malthête J.Curr Opin Colloid Interface Sci,2002,7:312-325
    31 Hoag B P,Gin D L.Adv Mater,1998,10:1546-1551
    32 Rosen B M,Wilson C J,Wilson D A,Peterca M,Imam M R,Percec V.Chem Rev,2009,109:6275-6540
    33 Lin C,Ringsdorf H,Ebert M,Kleppinger R,Wendorff J H.Liq Cryst,1989,5:1841-1847
    34 Percec V,Heck J.Polym Bull,1990,24:255-262
    35 Percec V,Heck J.Polym Bull,1991,25:55-62
    36 Percec V,Heck J.J Polym Sci,Part A:Polym Chem,1991,29:591-597
    37 Percec V,Heck J.Polym Bull,1991,25:431-438
    38 Percec V,Heck J,Ungar G.Macromolecules,1991,24:4957-4962
    39 Percec V,Ahn C H,Ungar G,Yeardley D J P,Moller M,Sheiko S S.Nature,1998,391:161-164
    40 Wunderlich B.Macromolecular Physics,Vol.1:Crystal Structure,Morphology,Defects.Academic Press,1973.62-85
    41 Watanabe J,Ono H,Uematsu I,Abe A.Macromolecules,1985,18:2141-2148
    42 Yamagishi T,Fukuda T,Miyamoto T,Takashina Y,Yakoh Y,Watanabe J.Liq Cryst,1991,10:467-473
    43 Stepanyan R,Subbotin A,Knaapila M,Ikkala O,Ten Brinke G.Macromolecules,2003,36:3758-3763
    44 Fredrickson G H.Macromolecules,1993,26:4351-4355
    45 Semenov A N.Sov Phys JETP,1985,61:733-742
    46 Percec V,Aqad E,Peterca M,Rudick J G,Lemon L,Ronda J C,de B B,Heiney P A,Meijer E W.J Am Chem Soc,2006,128:16365-16372
    47 Wang Y R,Li X J,Pan Y,Zheng Z H,Ding X B,Peng Y X.RSC Adv,2014,4:17156-17160
    48 Zhang Y M,Wang Q H,Wang C,Wang T M.J Mater Chem,2011,21:9073-9078
    49 Zheng N,Fang G Q,Cao Z L,Zhao Q,Xie T.Polym Chem,2015,6:3046-3053
    50 Voit W,Ware T,Dasari R R,Smith P,Danz L,Simon D,Barlow S,Marder S R,Gall K.Adv Funct Mater,2010,20:162-171
    51Xie T,Xiao X C,Cheng Y T.Macromol Rapid Commun,2009,30:1823-1827
    52Barkley D A,Rokhlenko Y,Marine J E,David R,Sahoo D,Watson M D,Koga T,Osuji C O,Rudick J G.J Am Chem Soc,2017,139:15977-15983
    53Andreopoulou K A,Peterca M,Wilson D A,Partridge B E,Heiney P A,Percec V.Macromolecules,2017,50:5271-5284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700