Plasma discharge characteristics of segmented diverter strips subject to lightning strike
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Plasma discharge characteristics of segmented diverter strips subject to lightning strike
  • 作者:陈汉 ; 王富生 ; 熊秀 ; 何征 ; 岳珠峰
  • 英文作者:Han CHEN;Fusheng WANG;Xiu XIONG;Zheng HE;Zhufeng YUE;School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University;Airborne Electromagnetic Technology Co.,Ltd;
  • 英文关键词:segmented diverter strip;;lightning strike;;magnetohydrodynamics;;plasma channel;;high-voltage tests
  • 中文刊名:DNZK
  • 英文刊名:等离子体科学和技术(英文版)
  • 机构:School of Mechanics Civil Engineering and Architecture Northwestern Polytechnical University;Airborne Electromagnetic Technology Co. Ltd;
  • 出版日期:2019-02-15
  • 出版单位:Plasma Science and Technology
  • 年:2019
  • 期:v.21
  • 基金:supported by National Natural Science Foundation of China (No. 51475369);; the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JM1001)
  • 语种:英文;
  • 页:DNZK201902006
  • 页数:13
  • CN:02
  • ISSN:34-1187/TL
  • 分类号:26-38
摘要
In order to research segmented diverters for aircraft lightning protection, a transient 2 D multiphysics model based on magnetohydrodynamics theory is proposed to predict the location of the arc plasma discharge and lightning channel, and to simulate the electrothermal behavior.Based on numerical calculation and preliminary analysis, factors that affect the breakdown voltage of the segmented diverter are discussed. The results show that the voltage increase rate of the voltage source, the width of the air gap between metal segments and the geometry of these segments influence the breakdown voltage of the strip. High-voltage tests of the segmented diverter are performed to reveal air breakdown of the strip and redirect the lightning current.Experimental and numerical results are compared to verify the correctness of the numerical model. The ionization of the air gap between metal segments and the breakdown voltage of the strip calculated by the model are qualitatively consistent with experimental results. The breakdown voltage of the segmented diverter is far lower than the lightning voltage. When a lightning strike occurs, the segmented diverter can be quickly ionized to form a plasma channel which can guide the lightning current well.
        In order to research segmented diverters for aircraft lightning protection, a transient 2D multiphysics model based on magnetohydrodynamics theory is proposed to predict the location of the arc plasma discharge and lightning channel, and to simulate the electrothermal behavior.Based on numerical calculation and preliminary analysis, factors that affect the breakdown voltage of the segmented diverter are discussed. The results show that the voltage increase rate of the voltage source, the width of the air gap between metal segments and the geometry of these segments influence the breakdown voltage of the strip. High-voltage tests of the segmented diverter are performed to reveal air breakdown of the strip and redirect the lightning current.Experimental and numerical results are compared to verify the correctness of the numerical model. The ionization of the air gap between metal segments and the breakdown voltage of the strip calculated by the model are qualitatively consistent with experimental results. The breakdown voltage of the segmented diverter is far lower than the lightning voltage. When a lightning strike occurs, the segmented diverter can be quickly ionized to form a plasma channel which can guide the lightning current well.
引文
[1]Morgan D et al 2012 Aerospace Lab 5 1(hal-01184419)
    [2]GagnéM and Therriault D 2014 Prog.Aerosp.Sci.64 1
    [3]Duan Y C,Xiu X and Pingdao H U 2017 Research on aircraft radome lightning protection based on segmented diverter strips Proc.2017 Int.Symp.on Electromagnetic Compatibility-EMC Europe(Angers,France:IEEE)(https://doi.org/10.1109/EMCEurope.2017.8094806)
    [4]Karch C et al 2017 Lightning strike protection of radomes-an overview Deutscher Luft-Und Raumfahrtkongress 2017-Dlrk(https://dglr.de/publikationen/2017/450139.pdf)
    [5]Plumer J A and Hoots L C 1978 Lightning protection with segmented diverters Proc.1978 IEEE Int.Symp.on Electromagnetic Compatibility(Atlanta,GA:IEEE)(https://doi.org/10.1109/ISEMC.1978.7566854)
    [6]Petrov N I et al 2008 Lightning strikes to aircraft radome:electric field shielding simulation Proc.2008 17th Int.Conf.on Gas Discharges and Their Applications(Cardiff:IEEE)
    [7]Ulmann A et al 2001 SAE Technical Paper 1 2883(http://irsweb.it/en/PDF/lightning%20strokes%20to%20radomes%20Experimental%20study.pdf)
    [8]Elkalsh A et al 2017 IEEE J.Multiscale Multiphysics Comput.Tech.2 38
    [9]Luque A and Ebert U 2014 New J.Phys.16 013039
    [10]Chemartin L et al 2009 Atmos.Res.91 371
    [11]Bonet C et al 1982 Pure Appl.Chem.54 1221(http://list.iupac.org/publications/pac/1982/pdf/5406x1221.pdf)
    [12]Bai X N et al 2014 Astrophys.J.809 691
    [13]Chau S W and Hsu K L 2011 Comput.Fluids 45 109
    [14]Boulos M I et al 1994 Thermal Plasmas(New York:Springer)(https://doi.org/10.1007/978-1-4899-1337-1)
    [15]Schreiber P W,Hunter A M II and Benedetto K R 1973 AIAAJ.11 815
    [16]D’Angola A et al 2008 Eur.Phys.J.D 46 129
    [17]Solana P,Kapadia P and Dowden J 1998 J.Phys.D:Appl.Phys.31 3446
    [18]Lowke J J et al 1997 J.Phys.IV 7 2033
    [19]SAE 2005 Aircraft Lightning Environment and Related Test Waveforms:SAE-ARP-5412A(Warrendale,PA:SAEInternational)(https://doi.org/10.4271/ARP5412A)
    [20]SAE 2013 Aircraft Lightning Test Methods:ARP5416A(Warrendale,PA:Society of Automotive Engineers)(https://doi.org/10.4271/ARP5416A)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700