高功率螺旋波等离子体诊断试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Plasma Diagnostics of a High Power Helicon Source
  • 作者:孙斌 ; 赵杨 ; 魏建国 ; 方吉汉 ; 谭畅
  • 英文作者:SUN Bin;ZHAO Yang;WEI Jian-guo;FANG Ji-han;TAN Chang;Shaanxi Key Laboratory of Plasma Physics and Applied Technology,Xi'an Aerospace Propulsion Institute;
  • 关键词:螺旋波等离子体源 ; 射频补偿探针 ; 离子密度 ; 诊断
  • 英文关键词:Helicon plasma;;Radio-frequency compensated probe;;Ion density;;Diagnostics
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西安航天动力研究所陕西省等离子体物理与应用技术重点实验室;
  • 出版日期:2018-11-06 17:28
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.261
  • 基金:国家自然科学基金(11475131)
  • 语种:中文;
  • 页:TJJS201903028
  • 页数:7
  • CN:03
  • ISSN:11-1813/V
  • 分类号:233-239
摘要
高功率螺旋波等离子体源作为可变比冲磁等离子体发动机(Variable Specific Impulse Mag-netoplasma Rocket,VASIMR)的第一级,其参数直接影响发动机的性能。为提高螺旋波源的等离子体密度和工质电离率,以4kW螺旋波等离子体源为研究对象,利用射频补偿Langmuir探针诊断等离子体的离子密度和电子温度。试验结果表明,在强磁场条件下,随着功率的升高,螺旋波等离子体源内部共出现两次放电模式转换,最终进入了螺旋波放电模式。在达到螺旋波放电模式后,羽流区域的等离子体密度超过1×10~(12)cm~(-3),初步评估,放电天线区域的离子密度超过2×10~(14)cm~(-3),离子密度在放电管中心区域较高,沿径向逐渐降低。研究结果为30kW磁等离子体发动机的研制提供依据。
        As the first section of the Variable Specific Impulse Magnetoplasma Rocket(VASIMR), the high power helicon plasma source directly affects the performance of the rocket. For increasing the plasma density and the propellant ionization rate of the helicon plasma source, the ion density and the electron temperature of the helicon plasma source with 4 kW power have been tested by a radio-frequency compensated probe. The results show that, under the condition of strong magnetic field, the discharge mode jumps twice as the applied power increased, and the helicon discharge mode is obtained. With the helicon discharge mode, the ion density is over lx10~(12) cm~(-3) in the plume region, and is over 2×10~(14) cm~(-3) in the antenna region.The ion density is higher in the central area of the discharge tube, and decreases along the radial direction. The results provide evidence for the development of the VASIMR with 30 kW power.
引文
[1]Charles C,Boswell R W.Laboratory Evidence of Supersonic Ion Beam Generated by a Current-Free“Helicon”Double-Layer[J].Physics of Plasma,2004,11(4):1706-1714.
    [2]Charles C,Boswell R W.Current-Free Double-Layer Formation in a High-Density Helicon Discharge[J].Applied Physics Letters,2003,82(9):1356-1358.
    [3]Charles C,Boswell R W,Lieberman M A.Xenon Ion Beam Characterization in a Helicon Double Layer Thruster[J].Applied Physics Letters,2006,89(26).
    [4]夏广庆,王冬雪,薛伟华,等.螺旋波等离子体推进研究进展[J].推进技术,2011,32(6):857-863.(XIA Guang-qing,WANG Dong-xue,XUE Wei-hua,et al.Progress on the Research of Helicon Plasma Thruster[J].Journal of Propulsion Technology,2011,32(6):857-863.)
    [5]成玉国,夏广庆,韩亚杰.发散磁场中等离子体加速和推进性能数值研究[J].推进技术,2017,38(8):1914-1920.(CHENG Yu-guo,XIA Guang-qing,HAN Ya-jie.Numerical Investigation on Plasma Acceleration Process and Propulsion Performance on Divergence Magnetic Field[J].Journal of Propulsion Technology,2017,38(8):1914-1920.)
    [6]Lehane J A,Thonemann P C.An Experimental Study of Helicon Wave Propagation in a Gaseous Plasma[J].Proceedings of the Physical Society,1965,85(2).
    [7]Boswell R W.Very Efficient Plasma Generation by Whistler Waves near the Lower Hybrid Frequency[J].Plasma Physics and Controlled Fusion,1984,26(26):1147.
    [8]Perry A J,Boswell R W.Fast Anisotropic Etching of Silicon in an Inductively Coupled Plasma Reactor[J].Applied Physics Letters,1989,55(2):148-150.
    [9]Zhu P,Boswell R W.Ar II Laser Generated by Landau Damping of Whistler Waves at the Lower Hybrid Frequency[J].Physics Review Letter,1989,63(26):2805-2807.
    [10]Boswell R W,Perry A J,Emami M.Multipole Confined Diffusion Plasma Produced by 13.56MHz Electrodeless Source[J].Journal of Vacuum Science&Technology A,1989,7(6):3345-3350.
    [11]Zhu P,Boswell R W.Observation of Nonthermal Electron Tails in an RF-Excited Argon Magnetoplasma[J].Physics of Fluids B,1991,3(4):869-874.
    [12]Chen F F.Plasma Ionization by Helicon Waves[J].Plasma Physics and Controlled Fusion,2000,33(4).
    [13]Chen F F,Decker C D.Electron Acceleration in Helicon Source[J].Plasma Physics and Controlled Fusion,2001,34(4).
    [14]Chen F F.Experiments on Helicon Plasma Source[J].Journal of Vacuum Science&Technology a Vacuum Surfaces&Films,1992,10(4):1389-1401.
    [15]Cho S,Kwak J G.The Effects of the Density Profile on the Power Absorption and the Equilibrium Density in Helicon Plasmas[J].Physics of Plasma,1997,4(11):4167-4172.
    [16]Beal B E,Mak F.Operating Characteristics of Cylindrical and Annular Helicon Sources[C].Florence:International Electric Propulsion Conference,2007.
    [17]Yang X,Cheng M,Guo D,et al.Characteristics of Temporal Evolution of Particle Density and Electron Emperature in Helicon Discharge[J].Plasma Science and Technology,2017,19(10).
    [18]Xia G Q,Hao J K,Xu Zongqi,et al.Principle Prototype Design for Ground Experiment of Helicon Plasma Thruster[J].Scientia Sinica Technologica,2015,45(1).
    [19]Wang Y,Zhao G,Liu Z W,et al.Two Density Peaks in Low Magnetic Field Helicon Plasma[J].Physics of Plasmas,2015,22(9).
    [20]Chen F F.Langmuir Probe Measurement in the Intense RF Field of a Helicon Discharge[J].Plasma Sources Science and Technology,2012,21(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700