中国大陆沿海离岸海啸振幅统计分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Statistical Analysis of Offshore Tsunami Amplitude Along China Mainland Coasts
  • 作者:王南南 ; 董胜
  • 英文作者:WANG Nan-Nan;DONG Sheng;College of Engineering,Ocean University of China;
  • 关键词:海啸传播模型 ; 海啸振幅 ; Poisson型复合分布 ; 长期重现值
  • 英文关键词:tsunami propagation model;;tsunami amplitude;;Poisson compound distribution;;long term return values
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学工程学院;
  • 出版日期:2018-01-10
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2018
  • 期:v.48;No.276
  • 基金:国家自然科学基金项目(51479183)资助~~
  • 语种:中文;
  • 页:QDHY201801014
  • 页数:6
  • CN:01
  • ISSN:37-1414/P
  • 分类号:114-119
摘要
采用MOST海啸传播模型计算历史地震可能在中国沿海附近引发的海啸增水。历史地震的发生频次采用Poisson分布拟合,离岸海啸增水采用复合分布进行拟合。对比Poisson-Weibull分布与Poisson-Generalized Extreme Value分布的计算结果,Poisson-Lognormal分布可以更好地描述离岸海啸增水的概率分布。进一步给出中国沿海离岸地点的海啸振幅并估计了相应的重现值。结果显示,重新期为2 500a年时,广东省东北部海域、福建省西南部海域及台湾南部和东部海域的离岸海啸振幅达到50cm。所得结果可为中国沿海城市防灾减灾提供参考。
        A tsunami is one of the most catastrophic natural disasters in terms of casualties and economic losses.The tsunami forecast model developed by Pacific Marine Environmental Laboratory is based on the Method of Splitting Tsunami(MOST)and simulates the three stages of tsunami:generation,propagation and coastal inundation.The tsunami forecasting system based on this model has been proven to be reliable for the prediction and/or modeling of tsunami impacts in both far and near field for more than40 tsunamis since 1996.It has three key components:deep-ocean observations of tsunamis in real time,refining the tsunami source based on deep-ocean observations and tsunami source function in tsunami propagation database,and high-resolution inundation forecast models.In this paper,the MOST propagation model is used to simulate the potential tsunami trigged by history earthquakes that may have tsunami threat along China mainland coasts.Statistical property is analyzed for the offshore tsunami amplitudes in depth 50 malong China coasts and their long-term return value are calculated.The threshold selection method from generalized Pareto distribution validates the rationality of only studying the history earthquake with moment magnitude over 7 degrees.The Poisson distribution is used to fit the frequency of history earthquake with moment magnitude over 7 degrees,the Poisson-generalized Pareto distribution and the Poisson-lognormal distribution are used to fit the seismic moment magnitude and the offshore tsunami amplitude separately.With the assumption that the return period of March 11,2011 Japan tsunami is 500 years,we calculate the long-term return values of offshore tsunami amplitude along China coasts.If the return period is set as 1000 years,the return values of offshore tsunami amplitudes in Guangdong province northeast seas,Fujian southwest seas,Taiwan southwest seas,Zhejiang northeast seas and seas near Shanghai are above 20 cm;especially when the return period is 2500 years,the offshore tsunami amplitudes in Guangdong northeast seas,Fujian southwest seas and seas near Taiwan Kaohsiung are over 50 cm.The Gumbel Copula function is used to construct the joint distribution of seismic moment magnitude and offshore tsunami amplitude along China coasts.If the joint return period is 1000 years,the area where the offshore tsunami amplitudes are over 20 cm is larger than the one dimension distribution analysis case,but still around the provinces shown in one dimension case.
引文
[1]Fukao Y.Tsunami earthquakes and subduction processes near deep-sea trenches[J].Journal of Geophysical Research:Solid Earth(1978-2012),1979,84(B5):2303-2314.
    [2]Liu Y,Santos A,Wang S M,et al.Tsunami hazards along Chinese coast from potential earthquakes in South China Sea[J].Physics of the Earth and Planetary Interiors,2007,163(1):233-244.
    [3]叶琳,王喜年,包澄澜.中国的地震海啸及其预警服务[J].自然灾害学报,1994(1):100-103.Ye L,Wang X,Bao C.Tsunami in the China Seas and its warning service[J].Journal of Natural Disasters,1994,3(1):100-103.
    [4]包澄澜.海啸灾害及其预警系统[J].国际地震动态,2005(1):14-18.Bao C.Tsunami disaster and its pre-warning system[J].Recent Developments in World Seismology,2005(1):14-18.
    [5]Rikitake T,Aida I.Tsunami hazard probability in Japan[J].Bulletin of the Seismological Society of America,1988,78(3):1268-1278.
    [6]Annaka T,Satake K,Sakakiyama T,et al.Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts[M].Birkhuser Basel:Tsunami and Its Hazards in the Indian and Pacific Oceans.2007:577-592.
    [7]Choi B H,Hong S J,Pelinovsky E.Simulation of prognostic tsunamis on the Korean coast[J].Geophysical Research Letters,2001,28(10):2013-2016.
    [8]Geist E L,Parsons T.Probabilistic Analysis of Tsunami Hazards[J].Natural Hazards,2006,37(3):277-314.
    [9]Parsons T,Geist E L.Tsunami probability in the Caribbean region[M].Birkhuser Basel:Tsunami Science Four Years after the2004Indian Ocean Tsunami.2009:2089-2116.
    [10]González F I,Geist E L,Jaffe B,et al.Probabilistic tsunami hazard assessment at Seaside,Oregon,for near-and far-field seismic sources[J].Journal of Geophysical Research:Oceans(1978-2012),2009,114(C11).
    [11]Liu P L F,Wang X,Salisbury A J.Tsunami hazard and early warning system in South China Sea[J].Journal of Asian Earth Sciences,2009,36(1):2-12.
    [12]Helffrich G R.How good are routinely determined focal mechanisms?Empirical statistics based on a comparison of Harvard USGS and ERI momentensors[J].Geophys Jour Int,1997,131:714-750.
    [13]Tang L,Titov V V,Wei Y,et al.Tsunami forecast analysis for the May 2006 Tonga tsunami[J].Journal of Geophysical Research:Oceans(1978-2012),2008,113(C12).
    [14]Wei Y,Bernard E N,Tang L,et al.Real-time experimental forecast of the Peruvian tsunami of August 2007for US coastlines[J].Geophysical research letters,2008,35(4).
    [15]Feller W.On a general class of‘contagious’distribution[J].The Annals of Mathematical Statistics,1943,14(4):389-400.
    [16]Neyman J.On a new class of‘contagious’distribution,applicable in entomology and bacteriology[J].Annals of Math Stat,1939,10:35-57.
    [17]马逢时,刘德辅.海洋工程建筑中设计波高推算的新方法[J].科学通报,1979(1):33-37.Ma F,Liu D.New method to estimate design wave height in ocean engineering[J].Science Bulletin,1979(1):33-37.
    [18]Dong S,Liu W,Zhang L Z,et al.Long-term statistical analysis of typhoon wave heights with Poisson-maximum entropy distribution[C].//The Proceedings of 28the International Conference on Ocean,Offshore and Polar Engineering,Hawaii,USA,OMAE79278,2009,2:189-196.
    [19]Wang L P,Sun X G,Lu K B,and Xu D L.A maximum-entropy compound distribution for extreme wave heights of typhoon-affected sea areas[J].China Ocean Engineering,2012,26(1):49-58.
    [20]Titov V V,Synolakis C E.Numerical modeling of tidal wave runup[J].Journal of Waterway,Port,Coastal,and Ocean Engineering,1998,124(4):157-171.
    [21]Yanenko N N.The method of fractional steps[M].New York:Springer,1971.
    [22]Titov V V,Synolakis C E.Modeling of breaking and nonbreaking long-wave evolution and runup using VTCS-2[J].Journal of Waterway,Port,Coastal,and Ocean Engineering,1995,121(6):308-316.
    [23]Okada Y.Internal deformation due to shear and tensile faults in a half-space[J].Bulletin of the Seismological Society of America,1992,82(2):1018-1040.
    [24]Tsimopoulou V,Jonkman S N,Kolen B,et al.A multi-layered safety perspective on the tsunami disaster in Tohoku,Japan[C].//FLOODrisk 2012:The 2nd European Conference on FLOODrisk Management“Science,Policy and Practice:Closing the Gap”,Rotterdam,The Netherlands,20-22November 2012;Authors version.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700