立管涡激振动高阶响应研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on Higher-Order Responses of Vortex-Induced Vibration for a Mounted Cylinder
  • 作者:王人凤 ; 陈科 ; 尤云祥 ; 段金龙
  • 英文作者:WANG Ren-feng;CHEN Ke;YOU Yun-xiang;DUAN Jin-long;State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration;
  • 关键词:涡激振动(VIV) ; 流固耦合 ; Van ; der ; Pol振子模型 ; 一阶-高阶响应
  • 英文关键词:vortex-induced vibration(VIV);;structure and wake oscillator coupling;;Van der Pol oscillator;;first-plus higher-order responses
  • 中文刊名:CBLX
  • 英文刊名:Journal of Ship Mechanics
  • 机构:上海交通大学海洋工程国家重点实验室;高新船舶与深海开发装备协同创新中心;
  • 出版日期:2018-09-15
  • 出版单位:船舶力学
  • 年:2018
  • 期:v.22;No.179
  • 基金:Supported by the National Natural Science Foundation of China(Grant No.11272211);; National Program on Key Basic Research Project of China(No.2015CB251203)
  • 语种:英文;
  • 页:CBLX201809005
  • 页数:11
  • CN:09
  • ISSN:32-1468/U
  • 分类号:56-66
摘要
由于高阶响应对结构涡激振动存在显著影响,文中在考虑其影响的前提下利用经典Van der Pol尾流振子模型研究了立管在均匀流中的涡激振动特性。在尾流振子与结构模型的相互作用中同时考虑了一阶响应和高阶响应的影响,从而推导了一种考虑了一阶—高阶响应的涡激振动模型。并在此基础上,分析了考虑位移、速度和加速度三种不同右端耦合项作用下的响应特性。此外,还针对不同的质量阻尼比,比较了考虑高阶响应影响和未考虑高阶响应影响情况下系统的涡激振动特性。结果表明,考虑一阶—高阶响应的理论模型能更精确地反映该系统的振动特性。尾流振子和立管的运动幅值都有一定程度的增大。尽管计算结果显示高阶响应比一阶响应小若干个量级,但是不可以忽视高阶响应,因为它对一阶响应存在明显的影响。
        According to its significant effect on the structural vortex-induced vibration(VIV), higher-order responses of VIV on a mounted cylinder in a uniform flow is investigated on the basis of the classical Van der Pol wake oscillator. Both the first-order and higher-order responses are discussed for the interaction of a wake oscillator and a linear spring-mass-damper system. Equations are established to model the mechanism of VIV concerning the first-plus higher-order responses, and the analysis of the dynamical performance includes displacement, velocity and acceleration coupling terms.Moreover, comparison with the motion characteristics that only take the first-order response into account is made for various mass damping ratios. The results show that the new model based on the first-plus higher-order responses can characterize the behavior of VIV more precisely, such as the amplitudes of structural vibrations. The motion amplitudes of the wake oscillator and the cylinder enlarge to certain degrees, respectively. Although features of the higher-order responses including structural motion amplitude are several orders of magnitude smaller than that of the first-order response, it is not negligible according to its apparent influence on the first-order response.
引文
[1]Blevins R D.Flow-induced vibration[M].Van Nostrand Reinhold Co.,Inc.,New York,USA,1990.
    [2]Sarpkaya T.A critical review of the intrinsic nature of vortex-induced vibrations[J].Journal of Fluids and Structures,2004,19(4):389-447.
    [3]Williamson C H K,Govardhan R.A brief review of recent results in vortex-induced vibrations[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(6):713-735.
    [4]Khalak A,Williamson C H K.Motions,forces and mode transitions in vortex-induced vibrations at low mass-damping[J].Journal of Fluids and Structures,1999,13(7):813-851.
    [5]Raghavan K,Bernitsas M M.Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[J].Ocean Engineering,2011,38(5):719-731.
    [6]Wang X K,Su B Y,Tan S K.Experimental study of vortex-induced vibrations of a tethered cylinder[J].Journal of Fluids and Structures,2012,34:51-67.
    [7]Holmes S,Oakley O H,Constantinides Y.Simulation of riser VIV using fully three dimensional CFD simulations[C]//25th International Conference on Offshore Mechanics and Arctic Engineering.American Society of Mechanical Engineers,2006:563-570.
    [8]Constantinides Y,Oakley O H,Holmes S.CFD high L/D riser modeling study[C]//ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering.American Society of Mechanical Engineers,2007:715-722.
    [9]Zarantonello E H,Brikhoff G.Jets,wakes,and cavities[M].Academic Press Inc.,New York,USA,1957.
    [10]Bishop R E D,Hassan A Y.The lift and drag forces on a circular cylinder oscillating in a flowing fluid[C]//Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences.The Royal Society,1964,277:51-75.
    [11]Skop R A,Balasubramanian S.A new twist on an old model for vortex-excited vibrations[J].Journal of Fluids and Structures,1997,11(4):395-412.
    [12]Krenk S,Nielsen S R K.Energy balanced double oscillator model for vortex-induced vibrations[J].Journal of Engineering Mechanics,1999,125(3):263-271.
    [13]Plaschko P.Global chaos in flow-induced oscillations of cylinders[J].Journal of Fluids and Structures,2000,14(6):883-893.
    [14]Skop R A,Luo G.An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and nonuniform flows[J].Journal of Fluids and Structures,2001,15(6):867-884.
    [15]Noack B R,Ohle F,Eckelmann H.On cell formation in vortex streets[J].Journal of Fluid Mechanics,1991,227:293-308.
    [16]Balasubramanian S,Skop R A.A nonlinear oscillator model for vortex shedding from cylinders and cones in uniform and shear flows[J].Journal of Fluids and Structures,1996,10(3):197-214.
    [17]Balasubramanian S,Skop R A,Haan F L,et al.Vortex-excited vibrations of uniform pivoted cylinders in uniform and shear flow[J].Journal of Fluids and Structures,2000,14(1):65-85.
    [18]Facchinetti M L,Biolley F.Vortex-induced waves along cables[C]//ASME 2002 International Mechanical Engineering Congress and Exposition.American Society of Mechanical Engineers,2002:195-205.
    [19]Kim W J,Perkins N C.Two-dimensional vortex-induced vibration of cable suspensions[J].Journal of Fluids and Structures,2002,16(2):229-245.
    [20]Facchinetti M L,Langre E D,Biolley F.Coupling of structure and wake oscillators in vortex-induced vibrations[J].Journal of Fluids and Structures,2004,19(2):123-140.
    [21]Trim A D,Braaten H,Lie H,et al.Experimental investigation of vortex-induced vibration of long marine risers[J].Journal of Fluids and Structures,2005,21(3):335-361.
    [22]Lie H,Kaasen K E.Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J].Journal of Fluids and Structures,2006,22(4):557-575.
    [23]Huang K,Chen H C,Chen C R,et al.Riser VIV analysis by a CFD approach[C]//The 17th International Offshore and Polar Engineering Conference.International Society of Offshore and Polar Engineers,2007.
    [24]Williamson C H K,Roshko A.Vortex formation in the wake of an oscillating cylinder[J].Journal of Fluids and Structures,1988,2(4):355-381.
    [25]Qin L H.Development of reduced-order models for lift and drag on oscillating cylinders with higher-order spectral moments[D].PhD thesis,Virginia Polytechnic Institute and State University,2004.
    [26]Akhtar I.Parallel simulation,reduced-order modeling,and feedback control of vortex shedding using fluidic actuators[D].PhD thesis,Virginia Polytechnic Institute and State University,2008.
    [27]Marzouk O A.Simulation,modeling,and characterization of the wakes of fixed and moving cylinders[D].PhD thesis,Virginia Polytechnic Institute and State University,2009.
    [28]Nayfeh A H.Introduction to perturbation techniques[M].John Wiley&Sons,Inc.,New Jersey,USA,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700