蛋白质翻译后修饰在蛋白质-蛋白质相互作用中的调控作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Importance of protein post-translational modifications in finding partners
  • 作者:侯天云 ; 陆小鹏 ; 朱卫国
  • 英文作者:HOU TianYun;LU XiaoPeng;ZHU WeiGuo;Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education),Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function,Department of Biochemistry and Molecular Biology,School of Basic Medical Sciences,Peking University Health Science Center;Center for Life Sciences,Peking-Tsinghua University;Department of Biochemistry and Molecular Biology,School of Medicine,Shenzhen University;
  • 关键词:蛋白质-蛋白质相互作用 ; 翻译后修饰 ; 甲基化 ; 乙酰化 ; 磷酸化 ; 泛素化
  • 英文关键词:protein-protein interaction;;post-translational modification;;methylation;;acetylation;;phorsphorylation;;ubiquitination
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:教育部肿瘤发生与转化研究重点实验室蛋白质修饰与细胞功能北京市重点实验室北京大学医学部基础医学院生物化学与分子生物学系;北京大学-清华大学生命科学联合中心;深圳大学医学院生物化学与分子生物学系;
  • 出版日期:2017-03-20
  • 出版单位:科学通报
  • 年:2017
  • 期:v.62
  • 语种:中文;
  • 页:KXTB201708004
  • 页数:11
  • CN:08
  • ISSN:11-1784/N
  • 分类号:23-33
摘要
蛋白质-蛋白质相互作用是蛋白质发挥功能的主要机制之一,在DNA损伤修复、自噬和代谢等过程中都扮演着非常重要的角色,蛋白相互作用异常便会导致肿瘤等疾病的发生.在蛋白质的赖氨酸、丝氨酸和苏氨酸等氨基酸残基上,可发生甲基化、乙酰化、磷酸化和泛素化等200多种翻译后修饰,这些修饰通常能改变蛋白质的电性、疏水性和空间结构等属性,为与之结合的蛋白提供结合的锚定或产生位阻效应,像一把开关在时空上精确调控蛋白质-蛋白质相互作用的发生以及动态变化.结构研究表明,蛋白质之间的相互作用通常由临近的几个氨基酸残基直接结合,替换该区域的氨基酸残基,通常能破坏结合,使其失去部分功能或酶活性,可以针对性地开发和设计抑制剂或激活剂,用于肿瘤等疾病的治疗.本文简要介绍了蛋白质翻译后修饰在蛋白质-蛋白质相互作用中的调控作用,以及发挥的重要生理功能.
        Cellular processes are tightly regulated by functional protein networks, which are composed of numerous protein-protein interactions(PPIs). Proteins interact with their binding partners through distinct mechanisms, while defects of these machineries have been consequently implicated in the development of various diseases, such as cancer, neurodegeneration and immunological disorders. Interactions between proteins contribute to a complicated network involving many signaling pathways, and these interactions are either permanent or transient depending on the circumstances. Stable interactions assemble relatively stable complexes, which are mainly responsible for cellular functions under unstressed conditions, such as the proteasome complex, nuclear pore complex and histone octamer. On the other hand, transient proteins interactions allow cells to respond to both intracellular signals and extracellular stimuli timely and efficiently. To understand how PPIs are precisely regulated, it is critical to know how proteins and their binding partners interact in precise orientations. It is now well accepted that post-translational modifications(PTMs) of certain amino acid residues can be recognized and bound by specific motifs. PTMs such as methylation, acetylation, phosphorylation or ubiquitination on certain protein amino acid residues located on or around the interaction surfaces may interfere the electrical property, hydrophobicity, structure of proteins and provide anchors or obstacles for intermolecular binding. This is of great importance in regulating both permanent and transient interactions, which are indispensable for the coordination of temporal and spatial adaption. Abnormal PTMs can result in aberrant protein interaction network, cause systematic dysfunctions and ultimately lead to diseases such as cancer. Therefore, inhibitors design based on PTMs regulated PPIs may have good therapeutic prospects for cancer treatment. Recent studies have begun to show that, with the right tools, certain classes of PTMs regulated PPI can yield to the efforts to develop inhibitors to disrupt the interactions between proteins and their partners, and the first PTMs regulated PPI inhibitors have reached clinical development. In this review, we described the research leading to these breakthroughs, briefly summarize the vital roles played by several common PTMs in PPIs regulation and highlight the existence of mechanisms and structural basis, and explore their roles in deciding whether the PPIs are specific or not. Besides, we also explore and discuss emerging effective research strategies for PTMs in PPIs regulation.
引文
1 Remaut H,Waksman G.Protein-protein interaction through?-strand addition.Trends Biochem Sci,2006,31:436-444
    2 Deng X,Lu T,Wang L,et al.Recruitment of the nineteen complex to the activated spliceosome requires At PRMT5.Proc Natl Acad Sci USA,2016,113:5447-5452
    3 Hegele A,Kamburov A,Grossmann A,et al.Dynamic protein-protein interaction wiring of the human spliceosome.Mol Cell,2012,45:567-580
    4 Park M J,Sheng R,Silkov A,et al.SH2 domains serve as lipid-binding modules for p Tyr-signaling proteins.Mol Cell,2016,62:7-20
    5 Wang D,Zhou J,Liu X,et al.Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability.Proc Natl Acad Sci USA,2013,110:5516-5521
    6 Shen C,Wang D,Liu X,et al.SET7/9 regulates cancer cell proliferation by influencing?-catenin stability.FASEB J,2015,29:4313-4323
    7 Wei F Z,Cao Z,Wang X,et al.Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway.Autophagy,2015,11:2309-2322
    8 Zhao Y,Li X,Cai M Y,et al.XBP-1u suppresses autophagy by promoting the degradation of Fox O1 in cancer cells.Cell Res,2013,23:491-507
    9 Zhang P,Tu B,Wang H,et al.Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting Fox O1 nuclear exclusion.Proc Natl Acad Sci USA,2014,111:10684-10689
    10 Yu Y,Wu J,Wang Y,et al.Kindlin 2 forms a transcriptional complex with?-catenin and TCF4 to enhance Wnt signalling.EMBO Rep,2012,13:750-758
    11 van den Berg D L,Snoek T,Mullin N P,et al.An Oct4-centered protein interaction network in embryonic stem cells.Cell Stem Cell,2010,6:369-381
    12 Lu S,Yang Y,Du Y,et al.The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2.Oncotarget,2015,6:34704-34717
    13 Cai J,Zuo Y,Wang T,et al.A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity.Oncogene,2016,35:4949-4956
    14 Lim J,Hao T,Shaw C,et al.A protein-protein interaction network for human inherited ataxias and disorders of purkinje cell degeneration.Cell,2006,125:801-814
    15 Virkamaki A,Ueki K,Kahn C R.Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance.JClin Invest,1999,103:931-943
    16 Nooren I M,Thornton J M.Diversity of protein-protein interactions.EMBO J,2003,22:3486-3492
    17 Perkins J R,Diboun I,Dessailly B H,et al.Transient protein-protein interactions:Structural,functional,and network properties.Structure,2010,18:1233-1243
    18 Nielsen A L,Oulad-Abdelghani M,Ortiz J A,et al.Heterochromatin formation in mammalian cells:Interaction between histones and HP1proteins.Mol Cell,2001,7:729-739
    19 Fritsch L,Robin P,Mathieu J R,et al.A subset of the histone H3 lysine 9 methyltransferases Suv39h1,G9a,GLP,and SETDB1 participate in a multimeric complex.Mol Cell,2010,37:46-56
    20 Moellering R E,Cravatt B F.Functional lysine modification by an intrinsically reactive primary glycolytic metabolite.Science,2013,341:549-553
    21 Musselman C A,Lalonde M E,Cote J,et al.Perceiving the epigenetic landscape through histone readers.Nat Struct Mol Biol,2012,19:1218-1227
    22 Csizmok V,Follis A V,Kriwacki R W,et al.Dynamic protein interaction networks and new structural paradigms in signaling.Chem Rev,2016,116:6424-6462
    23 Cheng Z,Cheung P,Kuo A J,et al.A molecular threading mechanism underlies Jumonji lysine demethylase KDM2A regulation of methylated H3K36.Genes Dev,2014,28:1758-1771
    24 Huang Y,Fang J,Bedford M T,et al.Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A.Science,2006,312:748-751
    25 Lee J,Thompson J R,Botuyan M V,et al.Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor.Nat Struct Mol Biol,2008,15:109-111
    26 Sankaran S M,Wilkinson A W,Elias J E,et al.A PWWP domain of histone-lysine N-methyltransferase NSD2 binds to dimethylated Lys-36 of histone H3 and regulates NSD2 function at chromatin.J Biol Chem,2016,291:8465-8474
    27 Li F,Mao G,Tong D,et al.The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with Mut S?.Cell,2013,153:590-600
    28 Dhayalan A,Rajavelu A,Rathert P,et al.The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation.J Biol Chem,2010,285:26114-26120
    29 Shi X,Hong T,Walter K L,et al.ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression.Nature,2006,442:96-99
    30 Lachner M,O’Carroll D,Rea S,et al.Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.Nature,2001,410:116-120
    31 Bannister A J,Zegerman P,Partridge J F,et al.Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.Nature,2001,410:120-124
    32 Cao L L,Wei F,Du Y,et al.ATM-mediated KDM2A phosphorylation is required for the DNA damage repair.Oncogene,2016,35:402
    33 Huyen Y,Zgheib O,Ditullio R J,et al.Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks.Nature,2004,432:406-411
    34 Zhang Y,Jurkowska R,Soeroes S,et al.Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the add domain with the histone H3 tail.Nucleic Acids Res,2010,38:4246-4253
    35 Guo X,Wang L,Li J,et al.Structural insight into autoinhibition and histone H3-induced activation of DNMT3A.Nature,2015,517:640-644
    36 Liu X,Wang D,Zhao Y,et al.Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1(SIRT1).Proc Natl Acad Sci USA,2011,108:1925-1930
    37 Gayatri S,Bedford M T.Readers of histone methylarginine marks.Biochim Biophys Acta,2014,1839:702-710
    38 Choudhary C,Weinert B T,Nishida Y,et al.The growing landscape of lysine acetylation links metabolism and cell signalling.Nat Rev Mol Cell Biol,2014,15:536-550
    39 Umehara T,Nakamura Y,Jang M K,et al.Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain.JBiol Chem,2010,285:7610-7618
    40 Shanle E K,Andrews F H,Meriesh H,et al.Association of Taf14 with acetylated histone H3 directs gene transcription and the DNAdamage response.Genes Dev,2015,29:1795-1800
    41 Li Y,Wen H,Xi Y,et al.AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation.Cell,2014,159:558-571
    42 Kanno T,Kanno Y,Leroy G,et al.BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones.Nat Struct Mol Biol,2014,21:1047-1057
    43 Zhao Y,Yang J,Liao W,et al.Cytosolic Fox O1 is essential for the induction of autophagy and tumour suppressor activity.Nat Cell Biol,2010,12:665-675
    44 Yu Y,Cai J P,Tu B,et al.Proliferating cell nuclear antigen is protected from degradation by forming a complex with Mut T Homolog2.JBiol Chem,2009,284:19310-19320
    45 Sundaresan N R,Pillai V B,Wolfgeher D,et al.The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1during tumorigenesis and cardiac hypertrophy.Sci Signal,2011,4:ra46
    46 Bah A,Vernon R M,Siddiqui Z,et al.Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch.Nature,2015,519:106-109
    47 Brunet A,Bonni A,Zigmond M J,et al.Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor.Cell,1999,96:857-868
    48 Guo S,Rena G,Cichy S,et al.Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence.J Biol Chem,1999,274:17184-17192
    49 Del P L,Gonzalez V M,Hernandez R,et al.Regulation of the forkhead transcription factor FKHR,but not the PAX3-FKHR fusion protein,by the serine/threonine kinase Akt.Oncogene,1999,18:7328-7333
    50 Rena G,Guo S,Cichy S C,et al.Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B.J Biol Chem,1999,274:17179-17183
    51 Zhao Y,Wang Y,Zhu W G.Applications of post-translational modifications of Fox O family proteins in biological functions.J Mol Cell Biol,2011,3:276-282
    52 Matsuzaki H,Daitoku H,Hatta M,et al.Insulin-induced phosphorylation of FKHR(Foxo1)targets to proteasomal degradation.Proc Natl Acad Sci USA,2003,100:11285-11290
    53 Aoki M,Jiang H,Vogt P K.Proteasomal degradation of the Fox O1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins.Proc Natl Acad Sci USA,2004,101:13613-13617
    54 Huang H,Regan K M,Wang F,et al.Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation.Proc Natl Acad Sci USA,2005,102:1649-1654
    55 Kato S,Ding J,Pisck E,et al.COP1 functions as a Fox O1 ubiquitin E3 ligase to regulate Fox O1-mediated gene expression.J Biol Chem,2008,283:35464-35473
    56 Li F,Xie P,Fan Y,et al.C terminus of Hsc70-interacting protein promotes smooth muscle cell proliferation and survival through ubiquitin-mediated degradation of Fox O1.J Biol Chem,2009,284:20090-20098
    57 Fu W,Ma Q,Chen L,et al.MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation.J Biol Chem,2009,284:13987-14000
    58 Alessi D R,Andjelkovic M,Caudwell B,et al.Mechanism of activation of protein kinase B by insulin and IGF-1.EMBO J,1996,15:6541-6551
    59 Cha T L,Zhou B P,Xia W,et al.Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3.Science,2005,310:306-310
    60 Huang W C,Chen C C.Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity.Mol Cell Biol,2005,25:6592-6602
    61 Datta S R,Dudek H,Tao X,et al.Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery.Cell,1997,91:231-241
    62 Mayo L D,Donner D B.A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus.Proc Natl Acad Sci USA,2001,98:11598-11603
    63 Dimmeler S,Fleming I,Fisslthaler B,et al.Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.Nature,1999,399:601-605
    64 Ozes O N,Mayo L D,Gustin J A,et al.NF-?B activation by tumour necrosis factor requires the Akt serine-threonine kinase.Nature,1999,401:82-85
    65 Hutti J E,Jarrell E T,Chang J D,et al.A rapid method for determining protein kinase phosphorylation specificity.Nat Methods,2004,1:27-29
    66 Hutti J E,Turk B E,Asara J M,et al.I?B kinase?phosphorylates the k63 deubiquitinase a20 to cause feedback inhibition of the NF-?Bpathway.Mol Cell Biol,2007,27:7451-7461
    67 Bullock A N,Debreczeni J,Amos A L,et al.Structure and substrate specificity of the Pim-1 kinase.J Biol Chem,2005,280:41675-41682
    68 Bunkoczi G,Salah E,Filippakopoulos P,et al.Structural and functional characterization of the human protein kinase ASK1.Structure,2007,15:1215-1226
    69 Rennefahrt U E,Deacon S W,Parker S A,et al.Specificity profiling of pak kinases allows identification of novel phosphorylation sites.JBiol Chem,2007,282:15667-15678
    70 Gwinn D M,Shackelford D B,Egan D F,et al.AMPK phosphorylation of raptor mediates a metabolic checkpoint.Mol Cell,2008,30:214-226
    71 Sato Y,Yoshikawa A,Mimura H,et al.Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80.EMBO J,2009,28:2461-2468
    72 Zou C,Mallampalli R K.Regulation of histone modifying enzymes by the ubiquitin-proteasome system.Biochim Biophys Acta,2014,1843:694-702
    73 Thirumurthi U,Shen J,Xia W,et al.MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer.Sci Signal,2014,7:ra71
    74 Pant V,Lozano G.Limiting the power of p53 through the ubiquitin proteasome pathway.Genes Dev,2014,28:1739-1751
    75 Yang W L,Wang J,Chan C H,et al.The E3 ligase TRAF6 regulates Akt ubiquitination and activation.Science,2009,325:1134-1138
    76 Lim J H,Jono H,Komatsu K,et al.CYLD negatively regulates transforming growth factor-?-signalling via deubiquitinating Akt.Nat Commun,2012,3:771
    77 Chan C H,Li C F,Yang W L,et al.The Skp2-SCF E3 ligase regulates Akt ubiquitination,glycolysis,Herceptin sensitivity,and tumorigenesis.Cell,2012,149:1098-1111
    78 Li W,Peng C,Lee M H,et al.TRAF4 is a critical molecule for Akt activation in lung cancer.Cancer Res,2013,73:6938-6950
    79 Wu J,Huen M S,Lu L Y,et al.Histone ubiquitination associates with BRCA1-dependent DNA damage response.Mol Cell Biol,2009,29:849-860
    80 Gatti M,Pinato S,Maspero E,et al.A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase.Cell Cycle,2012,11:2538-2544
    81 Mattiroli F,Vissers J H,van Dijk W J,et al.RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling.Cell,2012,150:1182-1195
    82 Doil C,Mailand N,Bekker-Jensen S,et al.RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins.Cell,2009,136:435-446
    83 Wang Y,Zhang N,Zhang L,et al.Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62.Mol Cell,2016,63:34-48
    84 Mallette F A,Mattiroli F,Cui G,et al.RNF8-and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites.EMBO J,2012,31:1865-1878
    85 Wang H,Zhai L,Xu J,et al.Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage.Mol Cell,2006,22:383-394
    86 Du J,Zhou Y,Su X,et al.Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.Science,2011,334:806-809
    87 Levental I,Lingwood D,Grzybek M,et al.Palmitoylation regulates raft affinity for the majority of integral raft proteins.Proc Natl Acad Sci USA,2010,107:22050-22054
    88 Greaves J,Chamberlain L H.Palmitoylation-dependent protein sorting.J Cell Biol,2007,176:249-254
    89 Rudd P M,Elliott T,Cresswell P,et al.Glycosylation and the immune system.Science,2001,291:2370-2376
    90 Gewinner C,Hart G,Zachara N,et al.The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5.J Biol Chem,2004,279:3563-3572
    91 Fujiki R,Hashiba W,Sekine H,et al.Glcnacylation of histone H2B facilitates its monoubiquitination.Nature,2011,480:557-560
    92 Marshall C J.Protein prenylation:A mediator of protein-protein interactions.Science,1993,259:1865-1866
    93 Thissen J A,Gross J M,Subramanian K,et al.Prenylation-dependent association of Ki-Ras with microtubules:Evidence for a role in subcellular trafficking.J Biol Chem,1997,272:30362-30370
    94 Leyte A,van Schijndel H B,Niehrs C,et al.Sulfation of Tyr1680 of human blood coagulation factor VIII is essential for the interaction of factor VIII with von Willebrand factor.J Biol Chem,1991,266:740-746
    95 Pouyani T,Seed B.PSGL-1 recognition of p-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus.Cell,1995,83:333-343
    96 Li X,Foley E A,Molloy K R,et al.Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions.J Am Chem Soc,2012,134:1982-1985
    97 Scott D E,Bayly A R,Abell C,et al.Small molecules,big targets:Drug discovery faces the protein-protein interaction challenge.Nat Rev Drug Discov,2016,15:533-550

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700