Development and genetic analysis of wheat double substitution lines carrying Hordeum vulgare 2H and Thinopyrum intermedium 2Ai#2 chromosomes
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and genetic analysis of wheat double substitution lines carrying Hordeum vulgare 2H and Thinopyrum intermedium 2Ai#2 chromosomes
  • 作者:Jing ; Wang ; Chang ; Liu ; Xianrui ; Guo ; Ke ; Wang ; Lipu ; Du ; Zhishan ; Lin ; Xingguo ; Ye
  • 英文作者:Jing Wang;Chang Liu;Xianrui Guo;Ke Wang;Lipu Du;Zhishan Lin;Xingguo Ye;National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences;State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;
  • 英文关键词:Wheat;;Double substitution lines;;Molecular markers;;Transmission rate of alien chromosomes;;Genomic in situ hybridization
  • 中文刊名:CROP
  • 英文刊名:作物学报(英文版)
  • 机构:National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences;State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences;
  • 出版日期:2019-04-15
  • 出版单位:The Crop Journal
  • 年:2019
  • 期:v.7
  • 基金:financially supported by the National Key Research and Development Program of China(2016YFD0102001 and 2016YFD0102002);; the National Natural Science Foundation of China(31771788);; the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences
  • 语种:英文;
  • 页:CROP201902005
  • 页数:13
  • CN:02
  • ISSN:10-1112/S
  • 分类号:39-51
摘要
Thinopyrum intermedium and barley are two close relatives of wheat and carry many genes that are potentially valuable for the improvement of various wheat traits. In this study we created wheat double substitution lines by hybridizing different wheat–Th. intermedium and wheat–barley disomic alien substitution lines, with the aim of using genes in Th. intermedium and barley for wheat breeding and investigating the genetic behavior of alien chromosomes and their wheat homoeologs. As expected, we obtained two types of wheat double substitution lines,2D2Ai#2(2B)2H( A) and 2A2 Ai#2(2B)2H(2D), in which different group 2 wheat chromosomes were replaced by barley chromosome 2 H and Th. intermedium chromosome 2Ai#2. The new materials were characterized using molecular markers, genomic in situ hybridization(GISH), and fluorescent in situ hybridization(FISH). GISH and FISH experiments revealed that the double substitution lines harbor 42 chromosomes including 38 wheat chromosomes, a pair of barley chromosomes, and a pair of Th. intermedium chromosomes. Analysis using specific DNA markers showed that two pairs of wheat homoeologous group 2 chromosomes in the new lines were substituted by a pair of 2H and a pair of 2Ai#2 chromosomes. Chromosome 2H showed a higher transmission rate than 2Ai#2, and both chromosomes were preferentially transmitted between generations via female gametes. Evaluation of botanic and agronomic traits demonstrated that,compared with their parents, the new lines showed similar growth habits and plant type but differences in plant height, flowering date, and self-fertility. Cytological observations using different probes suggested that the double substitution lines showed nearly normal genetic behavior before and during meiosis. The novel substitution lines can potentially be used in wheat meiosis research and breeding programs.
        Thinopyrum intermedium and barley are two close relatives of wheat and carry many genes that are potentially valuable for the improvement of various wheat traits. In this study we created wheat double substitution lines by hybridizing different wheat–Th. intermedium and wheat–barley disomic alien substitution lines, with the aim of using genes in Th. intermedium and barley for wheat breeding and investigating the genetic behavior of alien chromosomes and their wheat homoeologs. As expected, we obtained two types of wheat double substitution lines,2D2Ai#2(2B)2H( A) and 2A2 Ai#2(2B)2H(2D), in which different group 2 wheat chromosomes were replaced by barley chromosome 2 H and Th. intermedium chromosome 2Ai#2. The new materials were characterized using molecular markers, genomic in situ hybridization(GISH), and fluorescent in situ hybridization(FISH). GISH and FISH experiments revealed that the double substitution lines harbor 42 chromosomes including 38 wheat chromosomes, a pair of barley chromosomes, and a pair of Th. intermedium chromosomes. Analysis using specific DNA markers showed that two pairs of wheat homoeologous group 2 chromosomes in the new lines were substituted by a pair of 2H and a pair of 2Ai#2 chromosomes. Chromosome 2H showed a higher transmission rate than 2Ai#2, and both chromosomes were preferentially transmitted between generations via female gametes. Evaluation of botanic and agronomic traits demonstrated that,compared with their parents, the new lines showed similar growth habits and plant type but differences in plant height, flowering date, and self-fertility. Cytological observations using different probes suggested that the double substitution lines showed nearly normal genetic behavior before and during meiosis. The novel substitution lines can potentially be used in wheat meiosis research and breeding programs.
引文
[1]D.Wang,Wide hybridization:engineering the next leap in wheat yield,J.Genet.Genomics 36(2009)509-510.
    [2]K.Anamthawat-Jónsson,Wide-hybrids between wheat and lymegrass:breeding and agricultural potential,Icel.Agric.Sci.(1995)101-113.
    [3]G.Fedak,Alien species as sources of physiological traits for wheat improvement,Euphytica 34(1985)673-680.
    [4]B.Friebe,J.Jiang,B.S.Gill,P.L.Dyck,Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust,Theor.Appl.Genet.86(1993)141-149.
    [5]P.J.Larkin,P.J.Banks,E.S.Lagudah,R.Appels,C.Xiao,Z.Y.Xue,H.W.Ohm,R.A.McIntosh,Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances,Genome 38(1995)385-394.
    [6]Z.Y.Zhang,Z.Y.Xin,P.J.Larkin,Molecular characterization of a Thinopyrum intermedium group 2 chromosome(2Ai-2)conferring resistance to barley yellow dwarf virus,Genome44(2001)1129.
    [7]R.Franke,R.Nestrowicz,A.Senula,B.Staat,Intergeneric hybrids between Triticum aestivum L.and wild Triticeae,Hereditas 116(1992)225-231.
    [8]S.C.Sun,The approach and methods of breeding new varieties and new species from Agrotriticum hybrids,Acta Agron.Sin.7(1981)51-58(in Chinese with English abstract).
    [9]Q.Chen,R.L.Conner,F.Ahmad,A.Laroche,G.Fedak,J.B.Thomas,Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum×Thinopyrum ponticum and T.aestivum×Th.intermedium as sources of resistance to wheat streak mosaic virus and its vector,Aceria tosichella,Theor.Appl.Genet.97(1998)1-8.
    [10]S.Tang,Z.Li,X.Jia,P.J.Larkin,Genomic in situ hybridization(GISH)analysis of Thinopyrum intermedium,its partial amphiploid Zhong 5,and disease-resistant derivatives in wheat,Theor.Appl.Genet.100(2000)344-352.
    [11]O.R.Crasta,M.G.Francki,D.B.Bucholtz,H.C.Sharma,J.Zhang,R.C.Wang,H.W.Ohm,J.M.Anderson,Identification and characterization of wheat-wheatgrass translocation lines and localization of barley yellow dwarf virus resistance,Genome 43(2000)698-706.
    [12]Y.Cauderon,B.Saigne,M.Daige,The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement,in:E.R.Sears,L.M.S.Sears(Eds.),Proceedings of 4th International Wheat Genetics Symposium,University of Missouri,Columbia,Missouri,USA 1973,pp.401-407.
    [13]H.Sharma,H.Ohm,L.Goulart,R.Lister,R.Appels,O.Benlhabib,Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat,Genome 38(1995)406-413.
    [14]Z.Y.Xin,H.J.Xu,X.Chen,Z.S.Lin,G.H.Zhou,Y.T.Qian,Z.M.Cheng,P.J.Larkin,P.Banks,R.Appels,Development of common wheat germplasm resistant to barley yellow dwarf virus by biotechnology,Sci.China B 34(1991)1055-1062.
    [15]P.M.Banks,P.J.Larkin,H.S.Bariana,E.S.Lagudah,R.Appels,P.M.Waterhouse,R.I.Brettell,X.Chen,H.J.Xu,Z.Y.Xin,The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat,Genome 38(1995)395-405.
    [16]J.M.Anderson,D.L.Bucholtz,A.E.Greene,M.G.Francki,S.M.Gray,H.Sharma,H.W.Ohm,K.L.Perry,Characterization of wheatgrass-derived barley yellow dwarf virus resistance in a wheat alien chromosome substitution line,Phytopathology88(1998)851-855.
    [17]Z.Y.Xin,X.Chen,H.J.Xu,Development of addition lines resistant to barley yellow dwarf virus from wheat Th.intermediu,in:Z.S.Lin,Z.Y.Xin(Eds.),Proceedings of 8th International Wheat Genetic Symposium,China Scientech Press,Beijing 1993,pp.485-488.
    [18]Z.S.Lin,D.H.Huang,L.P.Du,X.G.Ye,Z.Y.Xin,Identification of wheat-Thinopyrum intermedium 2Ai-2 ditelosomic addition and substitution lines with resistance to barley yellow dwarf virus,Plant Breed.125(2010)114-119.
    [19]A.Kruse,Hordeum×Triticum hybrids,Hereditas 73(2010)157-161.
    [20]A.K.M.R.Islam,Wheat-barley addition lines:their use in genetic and evolutionary studies of barley,Barley Genetics IV:Proceedings of Fourth International Barley Genetics Symposium,1981.
    [21]U.Akmr,K.W.Shepherd,Substituting ability of individual barley chromosomes for wheat chromosomes:1.Substitutions involving barley chromosomes 1,3 and 6,Plant Breed.109(1992)141-150.
    [22]T.Efremova,V.Arbuzova,N.Trubacheeva,T.Ocadchaya,E.Chumanova,L.Pershina,Substitution of Hordeum marinum ssp.gussoneanum chromosome 7HL into wheat homoeologous group-7,Euphytica 192(2013)251-257.
    [23]K.Shirasu,T.Lahaye,M.W.Tan,F.Zhou,C.Azevedo,P.Schulze-Lefert,A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C.elegans,Cell 99(1999)355-366.
    [24]S.K.Nair,N.Wang,Y.Turuspekov,M.Pourkheirandish,S.Sinsuwongwat,G.X.Chen,M.Sameri,A.Tagiri,I.Honda,Y.Watanabe,Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage,Proc.Natl.Acad.Sci.U.S.A.107(2010)490-495.
    [25]A.Turner,J.Beales,S.Faure,R.P.Dunford,D.A.Laurie,The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley,Science 310(2005)1031-1034.
    [26]J.Hejgaard,S.E.Bj?rn,G.Nielsen,Localization to chromosomes of structural genes for the major protease inhibitors of barley grains,Theor.Appl.Genet.68(1984)127-130.
    [27]Y.Yuan,X.Chen,S.Xiao,A.K.M.R.Islam,Z.Xin,Identification of wheat-barley 2H alien substitution lines,Acta Bot.Sin.45(2003)1096-1101.
    [28]M.J.Wang,Y.Zhang,Z.S.Lin,X.G.Ye,Y.P.Yuan,W.Ma,Z.Y.Xin,Development of EST-PCR markers for Thinopyrum intermedium chromosome 2Ai#2 and their application in characterization of novel wheat-grass recombinants,Theor.Appl.Genet.121(2010)1369-1380.
    [29]M.She,J.Wang,X.Wang,G.Yin,K.Wang,L.Du,X.Ye,Comprehensive molecular analysis of arginase-encoding genes in common wheat and its progenitor species,Sci.Rep.7(2017)6641.
    [30]J.Yuan,X.Guo,J.Hu,Z.Lv,F.Han,Characterization of two CENH3 genes and their roles in wheat evolution,New Phytol.206(2015)839-851.
    [31]X.Guo,H.Su,Q.Shi,S.Fu,J.Wang,X.Zhang,Z.Hu,F.Han,De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids,PLoS Genet.12(2016),e1005997.
    [32]H.Yao,C.G.Tang,J.Zhao,Q.Zheng,B.Li,C.Y.Hao,Z.S.Li,X.Y.Zhang,Isolation of Thinopyrum ponticum genome specific repetitive sequences and their application for effective detection of alien segments in wheat,Sci.Agric.Sin.49(2016)3683-3693(in Chinese with English abstract).
    [33]A.Sepsi,I.Molnár,D.Szalay,M.Molnárláng,Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1,using sequential multicolor GISH and FISH,Theor.Appl.Genet.116(2008)825-834.
    [34]I.P.King,K.A.Purdie,H.N.Rezanoor,R.M.D.Koebner,T.E.Miller,S.M.Reader,P.Nicholson,Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs(RAPDs)and genomic in situ hybridization,Theor.Appl.Genet.86(1993)895-900.
    [35]X.Fei,W.Ji,C.Wang,Z.Hong,B.Yang,High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat(Triticum turgidum var.dicoccoides),Theor.Appl.Genet.124(2012)1549-1560.
    [36]R.Mcintosh,R.Park,P.Zhang,I.S.Dundas,B.Friebe,B.S.Gill,S.Xu,Wheat-Aegilops introgressions,in:M.Molnár-Láng,C.Ceoloni,J.Dole?el(Eds.),Alien Introgression in Wheat,Springer,Cham,Switzerland,2015.
    [37]L.Song,Y.Lu,J.Zhang,C.Pan,X.Yang,X.Li,W.Liu,L.Li,Physical mapping of Agropyron cristatum chromosome 6Pusing deletion lines in common wheat background,Theor.Appl.Genet.129(2016)1023-1034.
    [38]M.Kishii,Q.W.Dou,M.Garg,M.Ito,H.Tanaka,H.Tsujimoto,Production of wheat-Psathyrostachys huashanica chromosome addition lines,Genes Genet.Syst.85(2010)281-286.
    [39]G.Chen,Q.Zheng,Y.Bao,S.Liu,H.Wang,X.Li,Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin,J.Biosci.37(2012)149-155.
    [40]Y.Pang,X.Chen,J.Zhao,W.Du,X.Cheng,J.Wu,Y.Li,L.Wang,J.Wang,Q.Yang,Molecular cytogenetic characterization of a wheat-Leymus mollis 3D(3Ns)substitution line with resistance to leaf rust,J.Genet.Genomics 41(2014)205-214.
    [41]J.X.Ma,R.H.Zhou,J.Z.Jia,Y.C.Dong,Genetic stability and transmission of chromosome 6V from H.villosa through gametes in wheat background,Acta Genet.Sin.26(1999)384-390.
    [42]T.D.Fu,Z.L.Ren,Transmission of Dasypyrum villosum chromosomes through F1gametes in the Triticum durumDasypyrum villosum amphiploid×common wheat hybrid populations,J.Sichuan Agric.Univ.19(2001)335-339.
    [43]H.Y.Wang,J.Xiao,C.X.Yuan,T.Xu,C.Y.Yu,H.J.Sun,P.D.Chen,X.E.Wang,Transmission and genetic stability of nohomoeologous small fragment wheat-Haynaldia villosa translocation chromosomes with Pm21 in various cultivar backgrounds of common wheat,Acta Agron.Sin.42(2016)361-367(in Chinese with English abstract).
    [44]E.D.P.Whelan,R.L.Conner,J.B.Thomas,A.D.Kuzyk,Transmission of a wheat alien chromosome translocation with resistance,Can.J.Genet.Cytol.2(1986)294-297.
    [45]E.Martínezpérez,P.Shaw,S.Reader,L.Aragónalcaide,T.Miller,G.Moore,Homologous chromosome pairing in wheat,J.Cell Sci.112(1999)1761-1769.
    [46]B.Kemp,R.M.Boumil,M.N.Stewart,D.S.Dawson,A role for centromere pairing in meiotic chromosome segregation,Genes Dev.18(2004)1946-1951.
    [47]J.Zhang,W.P.Pawlowski,F.Han,Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize,Plant Cell25(2013)3900-3909.
    [48]K.Church,P.B.Moens,Centromere behavior during interphase and meiotic prophase in Allium fistulosum from 3-D,E.M.reconstruction,Chromosoma 56(1976)249-263.
    [49]S.J.Armstrong,F.C.H.Franklin,G.H.Jones,Nucleolusassociated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana,J.Cell Sci.114(2001)4207-4217.
    [50]E.Martinez-Perez,P.Shaw,G.Moore,The Ph1 locus is needed to ensure specific somatic and meiotic centromere association,Nature 411(2001)204-207.
    [51]J.C.Fung,W.F.Marshall,A.Dernburg,D.A.Agard,J.W.Sedat,Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations,J.Cell Biol.141(1998)5-20.
    [52]B.M.Weiner,N.Kleckner,Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast,Cell 77(1994)977-991.
    [53]M.D.Gale,K.M.Devos,Plant comparative genetics after 10years,Science 282(1998)656-659.
    [54]K.Anamthawat-Jónsson,Variable genome composition in Triticum×Leymus amphiploids,Theor.Appl.Genet.99(1999)1087-1093.
    [55]L.L.Qi,S.L.Wang,P.D.Chen,D.J.Liu,B.Friebe,B.S.Gill,Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat,Theor.Appl.Genet.95(1997)1084-1091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700