Immune checkpoint inhibitors in cancer therapy
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Immune checkpoint inhibitors in cancer therapy
  • 作者:Eika ; S.Webb ; Peng ; Liu ; Renato ; Baleeiro ; Nicholas ; R.Lemoine ; Ming ; Yuan ; Yaohe ; Wang
  • 英文作者:Eika S.Webb;Peng Liu;Renato Baleeiro;Nicholas R.Lemoine;Ming Yuan;Yaohe Wang;Center for Molecular Oncology Barts Cancer Institute, Queen Mary University of London;Sino-British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, Zhengzhou University, School of Basic Medical Sciences, Academy of Medical Sciences,Zhengzhou University;
  • 英文关键词:checkpoint inhibitor;;CTLA-4;;PD-1;;immunotherapy;;cancer
  • 中文刊名:NJYY
  • 英文刊名:生物医学研究杂志(英文版)
  • 机构:Center for Molecular Oncology Barts Cancer Institute, Queen Mary University of London;Sino-British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, Zhengzhou University, School of Basic Medical Sciences, Academy of Medical Sciences,Zhengzhou University;
  • 出版日期:2018-09-15
  • 出版单位:The Journal of Biomedical Research
  • 年:2018
  • 期:v.32
  • 基金:supported by The MRC DPFS grant (MR/M015696/1);; Ministry of Sciences and Technology of China (2013DFG32080)
  • 语种:英文;
  • 页:NJYY201805001
  • 页数:10
  • CN:05
  • ISSN:32-1810/R
  • 分类号:5-14
摘要
In recent years immune checkpoint inhibitors have garnered attention as being one of the most promising types of immunotherapy on the horizon. There has been particular focus on the immune checkpoint molecules, cytotoxic Tlymphocyte antigen-4(CTLA-4) and programmed cell death protein 1(PD-1) which have been shown to have potent immunomodulatory effects through their function as negative regulators of T cell activation. CTLA-4, through engagement with its ligands B7-1(CD80) and B7-2(CD86), plays a pivotal role in attenuating the activation of naive and memory T cells. In contrast, PD-1 is primarily involved in modulating T cell activity in peripheral tissues via its interaction with PD-L1 and PD-L2. The discovery of these negative regulators of the immune response was crucial in the development of checkpoint inhibitors. This shifted the focus from developing therapies that targeted activation of the host immune system against cancer to checkpoint inhibitors, which aimed to mediate tumor cell destruction through the removal of coinhibitory signals blocking anti-tumor T cell responses.
        In recent years immune checkpoint inhibitors have garnered attention as being one of the most promising types of immunotherapy on the horizon. There has been particular focus on the immune checkpoint molecules, cytotoxic Tlymphocyte antigen-4(CTLA-4) and programmed cell death protein 1(PD-1) which have been shown to have potent immunomodulatory effects through their function as negative regulators of T cell activation. CTLA-4, through engagement with its ligands B7-1(CD80) and B7-2(CD86), plays a pivotal role in attenuating the activation of naive and memory T cells. In contrast, PD-1 is primarily involved in modulating T cell activity in peripheral tissues via its interaction with PD-L1 and PD-L2. The discovery of these negative regulators of the immune response was crucial in the development of checkpoint inhibitors. This shifted the focus from developing therapies that targeted activation of the host immune system against cancer to checkpoint inhibitors, which aimed to mediate tumor cell destruction through the removal of coinhibitory signals blocking anti-tumor T cell responses.
引文
[1]Page DB, Postow MA, Callahan MK, et al. Immune modulation in cancer with antibodies[J]. Annu Rev Med,2014, 65:185-202.
    [2]Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4):252-264.
    [3]Bumet M. Cancer; a biological approach. I. The processes of control[J]. Br Med J, 1957, 1(5022):779-786.
    [4]Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+regulatory T cells in the human immune system[J]. Nat Rev Immunol, 2010, 10(7):490-500.
    [5]Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med, 2004,10(9):942-949.
    [6]Kryczek I, Zou L, Rodriguez P, et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma[J]. JExp Med, 2006,203(4):871-881.
    [7]Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1improves myeloid dendritic cell-mediated antitumor immunity[J]. Nat Med, 2003, 9(5):562-567.
    [8]Cui TX, Kryczek I, Zhao L, et al. Myeloid-derived suppressor cells enhance sternness of cancer cells by inducing microRNA 101 and suppressing the corepressor CtBP2[J]. Immunity, 2013, 39(3):611-621.
    [9]Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer[J].N Engl J Med, 2003, 348(3):203-213.
    [10]Pag6s F, Berger A, Camus M, et al. Effector memory T cells,early metastasis, and survival in colorectal cancer[J]. N Engl J Med, 2005, 353(25):2654-2666.
    [11]Galon J,Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313(5795):1960-1964.
    [12]Kryczek I, Zhao E, Liu Y, et al. Human TH17 cells are longlived effector memory cells[J]. Sci translat med,2011;3:104ra0.
    [13]Zhao E, Maj T, Kryczek I, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction[J]. Nat Immunol, 2016, 17(1):95-103,
    [14]Chen L, Linsley PS, Hellstrom KE. Costimulation of T cells for tumor immunity[J]. Immunol Today, 1993, 14(10):483-486.
    [15]Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4[J]. Immunity, 1995, 3(5):541-547.
    [16]Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice[J]. Science,2001, 291(5502):319-322.
    [17]Nishimura H, Nose M, Hiai H, et al. Development of lupuslike autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity, 1999, 11(2):141-151.
    [18]Waterhouse P, Penninger JM, Timms E, et al. Lymphoproli-ferative disorders with early lethality in mice deficient in Ctla-4[J]. Science, 1995, 270(5238):985-988.
    [19]Allison JP, Hurwitz AA, Leach DR. Manipulation of costimulatory signals to enhance antitumor T-cell responses[J]. Curr Opin Immunol, 1995, 7(5):682-686.
    [20]Okazaki T, Honjo T. PD-1 and PD-1 ligands:from discovery to clinical application[J]. Int Immunol, 2007, 19(7):813-824.
    [21]Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway[J]. N Engl J Med, 2016, 375(18):1767-1778.
    [22]Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion[J]. Nat Med, 1999, 5(12):1365-1369.
    [23]Tseng SY, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells[J]. J Exp Med, 2001, 193(7):839-846.
    [24]Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J]. JExp Med, 2000, 192(7):1027-1034.
    [25]Latchman Y,Wood CR, Chernova T,et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation[J]. Nat Immunol,2001, 2(3):261-268.
    [26]Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses[J]. Immunity, 2007,27(1):111-122.
    [27]Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis:a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8):793-800.
    [28]Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy:what's here, what's next[J]? Curr Opin Immunol, 2015, 33:23-35.
    [29]Aldarouish M, Wang C. Trends and advances in tumor immunology and lung cancer immunotherapy[J]. Journal of experimental&clinical cancer research:CR. 2016;35:157.
    [30]Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited[J]. Annu Rev Immunol, 2005, 23:515-548.
    [31]Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade[J]. Science, 1996,271(5256):1734-1736.
    [32]Erfani N, Mehrabadi SM, Ghayumi MA, et al. Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer(NSCLC)[J]. Lung Cancer, 2012, 77(2):306-311.
    [33]Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment[J]. Cell Death Dis, 2015, 6:e1792.
    [34]Funt SA, Page DB, Wolchok JD, et al. CTLA-4 antibodies:new directions, new combinations[J]. Oncology(Williston Park), 2014, 28(Suppl 3):6-14.
    [35]Li L, Chao QG, Ping LZ, et al. The prevalence of FOXP3+regulatory T-cells in peripheral blood of patients with NSCLC[J]. Cancer Biother Radiopharm, 2009, 24(3):357-367.
    [36]Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment[J]. Nat Rev Immunol, 2008,8(6):467-477.
    [37]Chen L, Han X. Anti-PD-1/PD-Ll therapy of human cancer:past, present, and future[J]. J Clin Invest, 2015,125(9):3384-3391.
    [38]Sauce D, Almeida JR, Larsen M, et al. PD-1 expression on human CD8 T cells depends on both state of differentiation and activation status[J]. AIDS, 2007, 21(15):2005-2013.
    [39]Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses[J]. Eur J Immunol, 2003, 33(10):2706-2716.
    [40]Thompson RH, Gillett MD, Cheville JC, et al. Costimulatory B7-H1 in renal cell carcinoma patients:Indicator of tumor aggressiveness and potential therapeutic target[J]. Proc Natl Acad Sci USA, 2004, 101(49):17174-17179.
    [41]Inman BA, Sebo TJ, Frigola X, et al. PD-L1(B7-H1)expression by urothelial carcinoma of the bladder and BCGinduced granulomata:associations with localized stage progression[J]. Cancer, 2007, 109(8):1499-1505.
    [42]Hamanishi J, Mandai M, Iwasaki M, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+T lymphocytes are prognostic factors of human ovarian cancer[J]. Proc Natl Acad Sci U S A, 2007, 104(9):3360-3365.
    [43]Wu C, Zhu Y, Jiang J, et al. Immunohistochemical localization of programmed death-1 ligand-1(PD-L1)in gastric carcinoma and its clinical significance[J]. Acta Histochem, 2006,108(1):19-24.
    [44]Nomi T, Sho M, Akahori T, et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer[J]. Clinical cancer research:an official journal of the American Association for Cancer Research, 2007;13:2151-2157.
    [45]Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production[J]. J Immunol, 2003,170(3):1257-1266.
    [46]Konishi J, Yamazaki K, Azuma M, et al. B7-HI expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression[J].Clinical cancer research:an official journal of the American Association for Cancer Research, 2004;10:5094-5100.
    [47]Liu J, Hamrouni A, Wolowiec D, et al. Plasma cells from multiple myeloma patients express B7-H1(PD-L1)and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway[J]. Blood, 2007, 110(1):296-304.
    [48]Kyi C, Postow MA. Checkpoint blocking antibodies in cancer immunotherapy[J]. FEBS Lett, 2014, 588(2):368-376.
    [49]Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma[J].N Engl J Med, 2011, 364(26):2517-2526.
    [50]Hodi FS,O'Day SJ,McDermott DF,et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8):711-723.
    [51]van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4(CTLA-4)and granulocyte/macrophage colony-stimulating factor(GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation[J]. J Exp Med, 1999, 190(3):355-366.
    [52]Kwon ED, Hurwitz AA, Foster BA, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer[J]. Proc Natl Acad Sci U S A, 1997,94(15):8099-8103.
    [53]Van Ginderachter JA, Liu Y, Geldhof AB, et al. B7-1, IFN gamma and anti-CTLA-4 co-operate to prevent T-cell tolerization during immunotherapy against a murine Tlymphoma[J]. Int J Cancer, 2000, 87(4):539-547.
    [54]Saha A, Chatterjee SK. Combination of CTL-associated antigen-4 blockade and depletion of CD25 regulatory T cells enhance tumour immunity of dendritic cell-based vaccine in a mouse model of colon cancer[J]. Scand J Immunol, 2010, 71(2):70-82.
    [55]Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al.Synergism of cytotoxic T lymphocyte-associated antigen 4blockade and depletion of CD25(+)regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses[J]. J Exp Med, 2001, 194(6):823-832.
    [56]Hodi FS. Cytotoxic T-lymphocyte-associated antigen-4[J].Clinical cancer research:an official journal of the American Association for Cancer Research. 2007;13:5238-42.
    [57]Boasberg P, Hamid O, O'Day S. Ipilimumab:unleashing the power of the immune system through CTLA-4 blockade[J].Semin Oncol, 2010, 37(5):440-449.
    [58]Ribas A. Clinical development of the anti-CTLA-4 antibody tremelimumab[J]. Semin Oncol, 2010, 37(5):450-454.
    [59]Sondak VK, Smalley KS, Kudchadkar R, et al. Ipilimumab[J].Nat Rev Drug Discov, 2011, 10(6):411-412.
    [60]Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26):2443-2454.
    [61]Prieto PA, Yang JC, Sherry RM, et al. CTLA-4 blockade with ipilimumab:long-term follow-up of 177 patients with metastatic melanoma[J]. Clinical cancer research:an official journal of the American Association for Cancer Research,2012; 18:2039-2047.
    [62]Thompson JA, Hamid O, Minor D, et al. Ipilimumab in treatment-naive and previously treated patients with metastatic melanoma:retrospective analysis of efficacy and safety data from a phase II trial[J]. J Immunother, 2012, 35(1):73-77.
    [63]Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment[J].Nat Rev Cancer,2012, 12(4):237-251.
    [64]Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phaseⅢtrials of ipilimumab in unresectable or metastatic melanoma[J]. J Clin Oncol, 2015, 33(17):1889-1894.
    [65]Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med, 2012, 366(26):2455-2465.
    [66]Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1(MDX-1106)in refractory solid tumors:safety, clinical activity, pharmacodynamics,and immunologic correlates[J]. J Clin Oncol, 2010, 28(19):3167-3175.
    [67]Lipson EJ, Sharfinan WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody[J]. Clinical cancer research:an official journal of the American Association for Cancer Research,2013;19:462-468.
    [68]Li B, VanRoey M, Wang C,et al. Anti-programmed death-1synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors[J]. Clinical cancer research:an official journal of the American Association for Cancer Research, 2009;15:1623-1634.
    [69]Soares KC, Rucki AA, Wu AA, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors[J]. J Immunother, 2015,38(1):1-11.
    [70]Robert C, Ribas A, Wolchok JD, et al. Anti-programmeddeath-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma:a randomised dosecomparison cohort of a phase 1 trial[J]. Lancet, 2014, 384(9948):1109-1117.
    [71]Larkin J, Lao CD, Urba WJ, et al. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma:a pooled analysis of 4 clinical trials[J]. JAMA Oncol, 2015, 1(4):433-440.
    [72]Ascierto PA, Marincola FM. 2015:The Year of Anti-PD-1/PD-Lls Against melanoma and beyond[J]. EBio Medicine,2015, 2(2):92-93.
    [73]Powles T, Eder JP, Fine GD, et al. MPDL3280A(anti-PD-L1)treatment leads to clinical activity in metastatic bladder cancer[J]. Nature, 2014, 515(7528):558-562.
    [74]Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients[J]. Nature, 2014, 515(7528):563-567.
    [75]Le DT, Uram JN, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency[J]. N Engl J Med, 2015,372(26):2509-2520.
    [76]Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma:results of an internationalphaseⅡtrial[J]. J Clin Oncol, 2013, 31(33):4199-4206.
    [77]Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma:a single group,open-label, phase 2 trial[J]. Lancet Oncol, 2014, 15(1):69-77.
    [78]Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma[J]. N Engl J Med, 2015, 372(4):311-319.
    [79]Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab(anti-PD-1)in melanoma[J]. N Engl J Med, 2013, 369(2):134-144.
    [80]Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab[J]. J Clin Oncol,2014, 32(10):1020-1030.
    [81]Robert C,Schachter J,Long GV, et al.,and the KEYNOTE-006 investigators. Pembrolizumab versus Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2015, 372(26):2521-2532.
    [82]Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma[J]. N Engl J Med, 2015, 373(1):23-34.
    [83]Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation[J]. N Engl J Med, 2015, 372(4):320-330.
    [84]Weber JS, D'Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment(CheckMate 037):a randomised, controlled, open-label, phase 3 trial[J]. Lancet Oncol, 2015, 16(4):375-384.
    [85]Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer[J]. N Engl J Med,2015, 372(21):2018-2028.
    [86]Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2015, 373(2):123-135.
    [87]Gettinger SN, Horn L, Gandhi L, et al. Overall Survival and Long-Term Safety of Nivolumab(Anti-Programmed Death 1Antibody, BMS-936558, ONO-4538)in Patients With Previously Treated Advanced Non-Small-Cell Lung Cancer[J].J Clin Oncol, 2015, 33(18):2004-2012.
    [88]Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer(CheckMate 063):a phase 2, single-arm trial[J].Lancet Oncol, 2015, 16(3):257-265.
    [89]McDermott DF, Drake CG, Sznol M, et al. Survival, Durable Response, and Long-Term Safety in Patients With Previously Treated Advanced Renal Cell Carcinoma Receiving Nivolumab[J]. J Clin Oncol, 2015, 33(18):2013-2020.
    [90]Harvey RD. Immunologic and clinical effects of targeting PD-1 in lung cancer[J]. Clin Pharmacol Ther, 2014, 96(2):214-223.
    [91]Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528):568-571.
    [92]Mangsbo SM, Sandin LC, Anger K, et al. Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy[J]. J Immunother, 2010, 33(3):225-235.
    [93]Raval RR, Sharabi AB, Walker AJ, et al. Tumor immunology and cancer immunotherapy:summary of the 2013 SITC primer[J]. J Immunother Cancer, 2014, 2:14.
    [94]Tykodi SS. PD-1 as an emerging therapeutic target in renal cell carcinoma:current evidence[J]. Onco Targets Ther, 2014, 7:1349-1359.
    [95]Stagg J, Allard B. Immunotherapeutic approaches in triplenegative breast cancer:latest research and clinical prospects.Ther Adv Med Oncol, 2013, 5(3):169-181.
    [96]Schalper KA. PD-L1 expression and tumor-infiltrating lymphocytes:Revisiting the antitumor immune response potential in breast cancer[J]. Oncoimmunology, 2014, 3:e29288.
    [97]Brahmer JR, Topalian S, Wollner I, et al. Safety and activity of MDX-1106(ONO-4538), an anti-PD-1 monoclonal antibody,in patients with selected refractory or relapsed malignancies[J]. J Clin Oncol, 2008, 26:3006.
    [98]Swart M, Verbrugge I, Beltman JB. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy[J].Front Oncol, 2016, 6:233.
    [99]Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1and anti-PD-L1 immune checkpoint antibodies[J]. Annals of oncology:official journal of the European Society for Medical Oncology, 2015;26:2375-2391.
    [100]Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer[J]. Nature, 2013, 500(7463):415-421.
    [101]Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma[J].NEngl JMed, 2014, 371(23):2189-2199.
    [102]Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124-128.
    [103]Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens[J]. Nature, 2014, 515(7528):577-581.
    [104]Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci U S A, 2010, 107(9):4275-4280.
    [105]Intlekofer AM, Thompson CB. At the bench:preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy[J]. J Leukoc Biol, 2013, 94(1):25-39.
    [106]Sznol MKH, Callahan MK,Postow MA,et al. Survival,response duration, and activity by BRAF mutation(MT)statusof nivolumab(NIVO, anti-PD-1, BMS-936558, ONO-4538)and ipilimumab(IPI)concurrent therapy in advanced melanoma[J]. ASCO Annual Meeting ASCO Annual Meeting2014.
    [107]Hirano F, Kaneko K, Tamura H, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity[J]. Cancer Res, 2005, 65(3):1089-1096.
    [108]Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors[J]. Nat Med, 1997, 3(6):682-685.
    [109]Redmond WL, Linch SN, Kasiewicz MJ. Combined targeting of costimulatory(0X40)and coinhibitory(CTLA-4)pathways elicits potent effector T cells capable of driving robust antitumor immunity[J]. Cancer Immunol Res, 2014, 2(2):142-153.
    [110]Guo Z, Wang X, Cheng D, et al. PD-1 blockade and OX40triggering synergistically protects against tumor growth in a murine model of ovarian cancer[J]. PLoS One, 2014, 9(2):e89350.
    [111]Kocak E, Lute K, Chang X, et al. Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity[J]. Cancer Res,2006, 66(14):7276-7284.
    [112]Belcaid Z, Phallen JA, Zeng J, et al. Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model[J]. PLoS One, 2014,9(7):e101764.
    [113]DaiM, WeiH, YipYY, et al. Long-lasting complete regression of established mouse tumors by counteracting Th2 inflammation[J]. J Immunother, 2013, 36(4):248-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700