燃气轮机动叶缩放型气膜孔冷却效果的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation on Film Cooling Efficiency of Convergent-divergent Shaped Holes on the Moving Blade in Gas Turbine
  • 作者:张浩 ; 李录平 ; 唐学智 ; 黄章俊
  • 英文作者:ZHANG Hao;LI Lu-ping;TANG Xue-zhi;HUANG Zhang-jun;School of Energy and Power Engineering,Changsha University of Science and Technology;
  • 关键词:燃气轮机 ; 动叶片 ; 气膜冷却 ; 缩放型气膜孔 ; 圆柱型气膜孔 ; 数值模拟 ; 气膜冷却效果评价
  • 英文关键词:gas turbine;;moving blade;;film cooling;;convergent-divergent shaped hole;;circle holes;;numerical simulation;;film cooling effect evaluation
  • 中文刊名:RNWS
  • 英文刊名:Journal of Engineering for Thermal Energy and Power
  • 机构:长沙理工大学能源与动力工程学院;
  • 出版日期:2019-03-14 10:26
  • 出版单位:热能动力工程
  • 年:2019
  • 期:v.34;No.220
  • 基金:湖南省自然科学基金(2018JJ2442);; 中国南方电网有限责任公司科技计划(K-GD2014-0583002-002)~~
  • 语种:中文;
  • 页:RNWS201903008
  • 页数:10
  • CN:03
  • ISSN:23-1176/TK
  • 分类号:41-50
摘要
为了增强燃气轮机动叶气膜冷却效果,提出一种缩放型气膜孔结构。采用数值模拟的研究方法,模拟了当吹风比M=1.2、主流湍流度Tu=5%时,不同孔间距下分别带有圆柱型气膜孔和缩放型气膜孔叶片的气膜冷却效果。研究结果表明:无论是在叶片压力面还是吸力面,带有缩放型气膜孔叶片的气膜冷却效果总体要优于圆柱型气膜孔叶片;在圆柱型气膜孔和缩放型气膜孔叶片表面,覆盖的气膜整体朝向叶片偏转角流动,由于叶片受到前缘冷却的影响,叶片后缘位置的气膜冷却效率更高,整体呈现出偏转叠加效应,带缩放型气膜孔的叶片在后缘位置冷却优势更加明显;随着孔间距的减小,两种孔型叶片的平均气膜冷却效率都呈现递增趋势,冷却性能得到提高。
        In order to improve the air film cooling effect on the moving blades in gas turbine,a convergent-divergent shaped air filmhole structure was put forward. The method of numerical simulation was applied to analyze the film cooling effect of circle holes and convergent-divergent shaped holes on the blade separately with different hole spacing when blowing ratio M=1.2 and mainstream turbulence degree Tu=5%. The results of the study showed that the film cooling effect of the convergent-divergent shaped holes is better than that of the circular holes whether it is on the pressure surface or the suction surface of the blade. The gas film flows towards the deflection angle of the blade and the film cooling efficiency on trailing edge of the blade is higher than that on the leading edge. The advantage of cooling efficiency with convergent-divergent shaped holes at the trailing edge is more evident due to the overlay effect from the leading cooling air. The average film cooling efficiency of the two kinds of holes increases with the decrease of the hole spacing,which results in improved cooling performance.
引文
[1] 程代京,谢永慧.燃气轮机传热和冷却技术[M]. 西安:西安交通大学出版社,2005.CHENG Dai-jing,XIE Yong-hui. Heat transfer and cooling technology of gas turbine[M].Xi′an: Xi′an Jiaotong University Press,2005.
    [2] BUNKER R S. A review of shaped hole turbine film-coolingtechnology[J].Journal of heat transfer,2005,127(4): 441-453.
    [3] GOLDSTEIN R J,ECKERT E R,BURGGRAF F. Effects of hole geometry and density on three-dimensional film cooling[J]. International Journal of Heat and Mass Transfer,1974,17(5):595-607.
    [4] GRITSCH M,COLBAN W,SCHA R H,et al. Effect of hole geometry on the thermal performance of fan-shaped film cooling holes[J]. Journal of Turbomachinery,2005,127(4):718-725.
    [5] 戴萍,林枫.燃气轮机叶片气膜冷却研究进展[J].热能动力工程,2009,24(1):1-6,139.DAI Ping,LIN Feng. Research progress on gas turbine blade air film cooling[J]. Journal of Engineering for Thermal Energy and Power,2009,24(1):1-6,139.
    [6] 刘钊,杨星,丰镇平.燃气轮机透平叶片传热和冷却研究:气膜冷却[J].热力透平,2014,43(1):1-9.LIU Zhao,YANG Xing,FENG Zhen-ping. Study on heat transfer and cooling in gas turbine blade: film cooling[J].Thermal Turbine,2014,43(1):1-9.
    [7] OKITA Y,NISHIURA M. Film effectiveness performance of an arrowhead-shaped film-cooling hole geometry[J]. ASME Journal of Turbomachinery,2007,129(2): 331-339.
    [8] 肖阳,金涛,何立明,等.心形孔气膜冷却特性的数值模拟[J].航空动力学报,2016,31(6):1335-1342.XIAO Yang,JIN Tao,HE Li-ming,et al,Numerical simulation on film cooling characteristics of heart shaped hole[J]. Journal of Aerospace Power,2016,31(6):1335-1342.
    [9] CHANG J,SHAO X,LI J,et al.A comparison of classical and pulsating jets in crossflow at various Strouhal numbers[J]. Mathematical Problems in Engineering,2017,2017(6):1-14.
    [10] 朱林中.高温合金毫秒激光打孔实验与数值模拟研究[D].南京:江苏大学,2017.ZHU Lin-zhong.Reserch on experiment and numerical simulation of micro holes drilling on superalloy by millisecond laser[D].Nanjing:Jiangsu University,2017.
    [11] 于飞龙,上官博,李园园,等. 重型燃气轮机透平第一级动叶复合冷却数值研究[J].中国电机工程学报,2016,36(1):179-186.YU Fei-long,SHANGGUAN Bo,LI Yuan-yuan,et al. Numerical investigation on compound cooling effect of the heavy-duty gas turbine first stage blade[J]. Proceedings of the CSEE,2016,36(1):179-186.
    [12] 蒋文程,赵志军,李树元. 叶片前缘上游端壁气膜冷却试验研究[J]. 动力工程学报,2016(3):191-195,226.JIANG Wen-cheng,ZHAO Zhi-jun,LI Shu-yuan. Experimental study on upstream endwall film cooling at leading edge of gas turbine blades[J]. Journal of Chinese Society of Power Engineering,2016(3):191-195,226.
    [13] 张鸣远,景思瑞,李国君.高等工程流体力学[M].西安:西安交通大学出版社,2006.ZHANG Ming-yuan,JING Si-rui,LI Guo-jun. Advanced engineering fluid dynamics[M]. Xi′an:Xi′an Jiaotong University Press,2006.
    [14] 沈菁菁. 燃气轮机叶片气膜冷却数值模拟[D].上海:上海发电设备成套设计研究院,2014.SHEN Jing-jing. Numerical simulation of gas turbine blade film cooling[D].Shanghai:Shanghai power equipment research institute,2014.
    [15] 骆剑霞. 涡轮叶片内冷结构对外部气膜冷却特性的影响研究[D].西安:西北工业大学,2015.LUO Jian-xia. Study on the influence of turbine blade internal cooling structure on the cooling characteristics of external film[D].Xi′an:Northwestern Polytechnical University,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700