用户名: 密码: 验证码:
浙江省大叶榉树生境地群落数量分类与排序
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative classification and ordination of Zelkova schneideriana habitat in Zhejiang Province
  • 作者:孙杰杰 ; 沈爱华 ; 黄玉洁 ; 袁位高 ; 吴初平 ; 叶诺楠 ; 朱锦茹 ; 邱浩杰 ; 焦洁洁 ; 江波
  • 英文作者:SUN Jiejie;SHEN Aihua;HUANG Yujie;YUAN Weigao;WU Chuping;YE Nuonan;ZHU Jinru;QIU Haojie;JIAO Jiejie;JIANG Bo;College of Biology and the Environment, Nanjing Forestry University;Zhejiang Academy of Forestry;Zhejiang A & F University;
  • 关键词:大叶榉树 ; 生境 ; 典范对应分析(CCA) ; 环境解释 ; 浙江省
  • 英文关键词:Zelkova schneideriana;;habitat;;canonical correspondence analysis(CCA);;vegetation-environment relationship
  • 中文刊名:NJLY
  • 英文刊名:Journal of Nanjing Forestry University(Natural Sciences Edition)
  • 机构:南京林业大学生物与环境学院;浙江省林业科学研究院;浙江农林大学;
  • 出版日期:2019-07-15
  • 出版单位:南京林业大学学报(自然科学版)
  • 年:2019
  • 期:v.43;No.202
  • 基金:浙江省重点研发计划(2017C02028);; 浙江省-中国林科院合作项目(2016SY08)
  • 语种:中文;
  • 页:NJLY201904012
  • 页数:9
  • CN:04
  • ISSN:32-1161/S
  • 分类号:88-96
摘要
【目的】探寻国家二级重点保护植物大叶榉树生境地的群落类型及群落结构,综合分析大叶榉树分布群落所在的环境特点,解释大叶榉树的生态学特征,明确影响大叶榉树分布的主要环境因子和群落特征,以期为大叶榉树种群恢复及浙江森林质量提升提供科学依据。【方法】基于包含3 420余个样地的浙江省生态监测样地数据库,经关键词搜索筛选出21个含有大叶榉树分布的样地,采用双向指示种分析(TWINSPAN)及典范对应分析(CCA)方法对浙江省大叶榉树生境群落进行了数量分类与排序。【结果】TWINSPAN结果显示浙江省大叶榉树生境所在的群落可分为8个类型。大叶榉树在研究区群落内的分布主要以阔叶林群落和杉木群落为主,21个样地中阔叶林群落达15个,杉木为主的群落为6个,但大叶榉树未出现在以马尾松为主的群落中。群落中主要出现了杉木、枫香、甜槠、大叶榉树、化香、木荷、香樟、白栎、柏木、山合欢等优势树种,其中杉木的重要值达到20.5%。在样地CCA排序图中8个群丛呈现一定的聚集分布,第1排序轴主要体现了海拔与枯落物厚度对群落及物种分布的影响,第2排序轴主要反映腐殖质厚度与坡度对群落及物种分布的影响。物种CCA结果显示:与大叶榉树生境选择最接近的树种是榔榆、黄连木、黄檀、化香、白栎,影响上述树种分布的主要环境因子是枯落物厚度和坡向。蒙特卡罗检验结果表明,影响浙江大叶榉树群落分布最主要的环境因子是海拔,其次为腐殖质厚度、坡度和土壤质地。【结论】浙江省森林中以白背叶、枫香、香樟、麻栎等树种为主的群落和杉木群落可作为大叶榉树种群恢复的载体。影响大叶榉树分布的主要环境因子是海拔、腐殖质厚度、坡度等条件。大叶榉树与榔榆、黄连木、黄檀、化香、白栎等树种对生境的选择趋于一致,在生态资源充足的情况下大叶榉树可与这些树种尝试混交造林。
        【Objective】 To provide the scientific basis for restoring Zelkova schneideriana, which is listed in the second class of protected plants in China, and to improve forest quality, we propose the following steps. We explored the community types and habitat-specific community structure of Z. schneideriana and comprehensively analyze the environmental characteristics of the Z. schneideriana community. In addition, we determined the ecological characteristics of Z. schneideriana, and identified the main environmental factors and community characteristics that affect the distribution of Z. schneideriana.【Method】In Zhejiang Province, based on its database of more than 3 420 ecological monitoring plots, and through comprehensive search, we selected 21 plots that contain Z. schneideriana. We applied TWINSPAN(two-way indicator species analysis) and CCA(canonical correspondence analysis) methods to quantitatively classify and ordinate the habitat community of Z. schneideriana in Zhejiang Province. 【Result】The result of TWINSPAN shows that the habitat-specific community of Z. schneideriana in Zhejiang Province can be divided into eight associations. The distribution of Z. schneideriana community in the study area is mainly in regions of broad-leaved forests and Cunninghamia lanceolata communities. There are 15 broad-leaved forests and 6 Cunninghamia lanceolata communities in the 21 plots studied. We found that Z. schneideriana was absent in communities dominated by Pinus massoniana. The dominant species in the research area were Cunninghamia lanceolata, Liquiolambar formosana, Castanopsis eyrei, Z. schneideriana, Platycarya strobilacea, Schima superba, Cinnamomum camphora, Quercus fabri, Cupressus funebris and Aabizia kalkora. The importance value of Cunninghamia lanceolata was up to 20.5%. We found 8 associations in the CCA ordination chart of samples plots, which showed inclination towards aggregated distribution. The first axis of CCA ordination mainly reflected the effect of altitude and litter-layer thickness on the distribution of communities and species; the second axis mainly reflected the effect of humus thickness and gradient on the distribution of communities and species. Species CCA showed that Ulmus parvifolia, Pistacia chinensis, Dalbergia hupeana, Platycarya strobilacea and Q. fabri had habitats most similar to that of Z. schneideriana. The main environmental factors affecting the distribution of these species were litter thickness and slope direction. Results of Monte Carlo test showed that the most important environmental factor affecting the distribution of Z. schneideriana in Zhejiang was altitude, followed by humus thickness, slope and soil type. 【Conclusion】Mallotus apelta, L. formosana, Cinnamomum camphora, Quercus acutissima and Cunninghamia lanceolata were found to be the main species in Zhejiang forests, and can be used as carriers for population restoration of Z. schneideriana. The main environmental factors affecting the distribution of Z. schneideriana are altitude, humus thickness and slope. Habitat selection of Z. schneideriana and other tree species such as Ulmus parvifolia, Pistacia chinensis, Dalbergia hupeana, Platycarya strobilacea and Q. fabri tends to be similar. Under the condition of sufficient ecological resources, we can try to mix Z. schneideriana with these tree species for reforestation.
引文
[1] 李俊清.森林生态学[M].北京:高等教育出版社,2010:16-17,252-273.
    [2] SWANSON F J,KRATZ T K,CAINE N,et al.Landform effects on ecosystem patterns and processes[J].BioScience,1988,38(2):92-98.DOI:10.2307/1310614.
    [3] BUDD W W.Land mosaics:the ecology of landscapes and regions[J].Landscape and Urban Planning,1996,36(3):229-231.DOI:10.1016/s0169-2046(96)00344-1.
    [4] 张巧明.秦岭南坡中段主要植物群落及物种多样性研究[D].杨凌:西北农林科技大学,2012.ZHANG Q M.Patterns of plant community and biodiversity on south slope in the middle of Qinling Mountains[D].Yangling :Northwest A & F University,2012.
    [5] VIRTANEN R,LUOTO M,R?M? T,et al.Recent vegetation changes at the high-latitude tree line ecotone are controlled by geomorphological disturbance,productivity and diversity[J].Global Ecology and Biogeography,2010,19(6):810-821.DOI:10.1111/j.1466-8238.2010.00570.x.
    [6] 叶诺楠,沈娜娉,商天其,等.浙江瑞安公益林群落结构及其与环境的相关性[J].植物学报,2017,52(4):496-510.DOI:10.11983/CBB16115.DOI:10.11983/CBB16115YE N N,SHEN N P,SHANG T Q,et al.Vegetation structure and internal relationship between distribution patterns of vegetation and environment in ecological service forest of Rui’an City in Zhejiang Province[J].Chinese Bulletin of Botany,2017,52(4):496-510.
    [7] HILL M O.TWINSPAN:a fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes[EB/OL]//Section of Ecology and Systematica.Cornell University,1979.[2018-08-18].https://www.researchgate.net/publication/240311310_TWINSPAN-A_Fortran_Program_for_Arranging_Multivariate_Data_in_an_Ordered_Two-way_Table_by_Classification_of_The_Individuals_and_Attributes.
    [8] 江洪,黄建辉,陈灵芝,等.东灵山植物群落的排序、数量分类与环境解释[J].植物学报,1994,36(7):539-551.JIANG H,HUANG J H,CHEN L Z,et al.DCA ordination,quantitative classification and environmental interpretation of plant communities in Dongling Mountain[J].Acta Botanica Sinica,1994,36(7):539-551.
    [9] 程瑞梅,肖文发.三峡库区森林植物群落数量分类与排序[J].林业科学,2008,44(4):20-27.DOI:10.3321/j.issn:1001-7488.2008.04.006.CHENG R M,XIAO W F.Quantitative classification and ordination of the forest communities in Three Gorges Reservoir area[J].Scientia Silvae Sinicae,2008,44(4):20-27.
    [10] 白晓航,张金屯,曹科,等.河北小五台山国家级自然保护区森林群落与环境的关系[J].生态学报,2017,37(11):3683-3696.DOI:10.5846/stxb201604140680.BAI X H,ZHANG J T,CAO K,et al.Relationship between forest communities and the environment in the Xiaowutai Mountain National Nature Reserve,Hebei[J].Acta Ecologica Sinica,2017,37(11):3683-3696.
    [11] 刘瑞雪,陈龙清,史志华.丹江口水库水滨带植物群落空间分布及环境解释[J].生态学报,2015,35(4):1208-1216.DOI:10.5846/stxb201304230786.LIU R X,CHEN L Q,SHI Z H.Spatial distribution of plant communities and environmental interpretation in the riparian zone of Danjiangkou Reservoir[J].Acta Ecologica Sinica,2015,35(4):1208-1216.
    [12] 钟娇娇,陈杰,陈倩,等.秦岭山地天然次生林群落MRT数量分类、CCA排序及多样性垂直格局[J].生态学报,2019,39(1):277-285.DOI:10.5846/stxb201712282338.ZHONG J J,CHEN J,CHEN Q,et al.Quantitative classification of MRT,CCA ordination,and species diversity along elevation gradients of a natural secondary forest in the Qinling Mountains[J].Acta Ecologica Sinica,2019,39(1):277-285.
    [13] 方元平,刘胜祥,项俊,等.湖北省大叶榉树自然种群分布研究[J].长江流域资源与环境,2007,16(6):744-747.DOI:10.3969/j.issn.1004-8227.2007.06.010.FANG Y P,LIU S X,XIANG J,et al.Study on the natural population distribution of Zelkova schneideriana in Hubei[J].Resources and Environment in the Yangtze Basin,2007,16(6):744-747.
    [14] 曹娴,罗玉兰,崔心红,等.大叶榉树遗传变异分析及优良单株选择[J].上海交通大学学报(农业科学版),2010,28(6):499-503.DOI:10.3969/j.issn.1671-9964.2010.06.003CAO X,LUO Y L,CUI X H,et al.Analysis of genetic variation and advanced trees selection of Zelkova schneideriana[J].Journal of Shanghai JiaoTong University(Agricultural Science),2010,28(6):499-503.
    [15] 张亚平,曾艳,刘晓玲,等.叶面喷施水杨酸对3种色系大叶榉树秋季叶片呈色的影响[J].植物生理学报,2018,54(1):127-132.DOI:10.13592/j.cnki.ppj.2017.0205.ZHANG Y P,ZENG Y,LIU X L,et al.Effects of foliage spray of salicylic acid on leaf color in three leaf-color types of Zelkova schneideriana in autumn[J].Plant Physiology Journal,2018,54(1):127-132.
    [16] 丁彦芬,高俊飞,张利.配方施肥对大叶榉树幼苗生长的影响[J].南京林业大学学报(自然科学版),2014(S1):35-38.DOI:10.3969/j.issn.1000-2006.2014.S1.008.DING Y F,GAO J F,ZHANG L.Effects of different fertilization on the growth of Zelkova schneideriana seedlings[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2014(S1):35-38.
    [17] 张文文,郭忠升,宁婷,等.黄土丘陵半干旱区柠条林密度对土壤水分和柠条生长的影响[J].生态学报,2015,35(3):725-732.DOI:10.5846/stxb201403300595.ZHANG W W,GUO Z S,NING T,et al.The effects of plant density on soil water and plant growth on semi-arid loess hilly region[J].Acta Ecologica Sinica,2015,35(3):725-732.
    [18] 袁位高.浙江省生态公益林主要群落结构的比较研究[D].北京:中国林业科学研究院,2009.YUAN W G.Comparative studies on structure of main forest type of ecological service forest in Zhejiang Province[D].Beijing:Chinese Academy of Forestry,2009.
    [19] 夏小梅,王娟,彭培好,等.四川牡丹生境群落的数量分类与排序[J].东北林业大学学报,2017,45(1):37-40.DOI:10.13759/j.cnki.dlxb.2017.01.009.XIA X M,WANG J,PENG P H,et al.Quantitative classification and ordination of Paeonia decomposita habitat communities[J].Journal of Northeast Forestry University,2017,45(1):37-40.
    [20] 邱扬,张金屯.DCCA排序轴分类及其在关帝山八水沟植物群落生态梯度分析中的应用[J].生态学报,2000,20(2):199-206.DOI:10.3321/j.issn:1000-0933.2000.02.005.QIU Y,ZHANG J T.The ordination axes clustering based on detrended canonical correspondence analysis ordination and its application to the analysis of the ecological gradients of plant communities[J].Acta Ecologica Sinica,2000,20(2):199-206.
    [21] KHAN M,KHAN S M,ILYAS M,et al.Plant species and communities assessment in interaction with edaphic and topographic factors:an ecological study of the mount Eelum District Swat,Pakistan[J].Saudi Journal of Biological Sciences,2016:S1319562X16301759.DOI:10.1016/j.sjbs.2016.11.018.
    [22] 苏日古嘎,张金屯,张斌,等.松山自然保护区森林群落的数量分类和排序[J].生态学报,2010,30(10):2621-2629.SURIGUGA,ZHANG J T,ZHANG B,et al.Numerical classification and ordination of forest communities in the Songshan National Nature Reserve[J].Acta Ecologica Sinica,2010,30(10):2621-2629.
    [23] 臧润国,井学辉,丁易,等.新疆阿尔泰山小东沟林区木本植物群落数量分类、排序及其环境解释[J].林业科学,2010,46(2):24-31.ZANG R G,JING X H,DING Y,et al.Quantitative classification,ordination and environmental analysis of woody plant communities in Xiaodonggou Forest area of the Altai Mountain,Xinjiang[J].Scientia Silvae Sinicae,2010,46(2):24-31.
    [24] VITTOZ P,BAYFIELD N,BROOKER R,et al.Reproducibility of species lists,visual cover estimates and frequency methods for recording high-mountain vegetation[J].Journal of Vegetation Science,2010,21(6):1035-1047.DOI:10.1111/j.1654-1103.2010.01216.x.
    [25] 段晓梅,白玉芳,张钦弟,等.山西太岳山脱皮榆群落的生态梯度分析及环境解释[J].植物学报,2016,51(1):40-48.DOI:10.11983/CBB15032.DUAN X M,BAI Y F,ZHANG Q D,et al.Ecological gradient analysis and environmental interpretation of Ulmus lamellosa communities in the Taiyueshan Reserve,Shanxi[J].Chinese Bulletin of Botany,2016,51(1):40-48.
    [26] 刘秋锋,康慕谊,刘全儒.中条山混沟地区森林乔木种的数量分类与环境解释[J].植物生态学报,2006,30(3):383-391.LIU Q F,KANG M Y,LIU Q R.Quantitative classification and environmental interpretation of forest tree species in Hungou,Zhongtiao Mountain[J].Journal of Plant Ecology,2006,30(3):383-391.
    [27] MEROW C,SILANDER J A.A comparison of Maxlike and Maxent for modelling species distributions[J].Methods in Ecology and Evolution,2014,5(3):215-225.DOI:10.1111/2041-210X.12152.
    [28] 马钦洪,李艳朋,练琚愉,等.鼎湖山南亚热带常绿阔叶林不同树种存活对邻体组成的响应差异[J].生物多样性,2018,26(6):535-544.DOI:10.17520/biods.2018056.MA Q H,LI Y P,LIAN J Y,et al.Difference in survival response of tree species to neighborhood crowding in a lower subtropical evergreen broad-leaved forest of Dinghushan[J].Biodiversity Science,2018.
    [29] 何淑勤,宫渊波,武万华,等.不同坡度下玉米生长期紫色土坡面径流及其可溶性有机碳流失特征[J].水土保持学报,2019,33 (1):16.DOI:10.13870/j.cnki.stbcxb.2019.01.016.HE S Q,GONG Y B,WU W H,et al.Characteristics of runoff and dissolved organic carbon loss in purple soil with different slope gradients during maize growth stages[J].Journal of Soil and Water Conservation,2019,33 (1):16.
    [30] WU C,VELLEND M,YUAN W,et al.Patterns and determinants of plant biodiversity in non-commercial forests of Eastern China[J].PloS One,2017,12(11):e0188409.DOI:10.1371/journal.pone.0188409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700