多孔PZT95/5铁电陶瓷材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress of Porous PZT95/5 Ferroelectric Ceramics
  • 作者:聂恒昌 ; 王永龄 ; 贺红亮 ; 王根水 ; 董显林
  • 英文作者:NIE Heng-Chang;WANG Yong-Ling;HE Hong-Liang;WANG Gen-Shui;DONG Xian-Lin;Shanghai Institute of Ceramics, Chinese Academy of Sciences;Institute of Fluid Physics, China Academy of Engineering Physics;
  • 关键词:铁电材料 ; PZT95/5 ; 多孔材料 ; 冲击波 ; 电机械性能 ; 综述
  • 英文关键词:ferroelectric materials;;PZT95/5;;porous materials;;shock wave;;electromechanical properties;;review
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:中国科学院上海硅酸盐研究所;中国工程物理研究院流体物理研究所;
  • 出版日期:2018-02-11 16:39
  • 出版单位:无机材料学报
  • 年:2018
  • 期:v.33;No.220
  • 基金:国家自然科学基金(51302292)~~
  • 语种:中文;
  • 页:WGCL201802006
  • 页数:9
  • CN:02
  • ISSN:31-1363/TQ
  • 分类号:45-53
摘要
基于铁电材料冲击波去极化效应的高功率脉冲电源在国防和高新技术领域具有重要应用。PZT95/5铁电陶瓷是目前铁电体高功率脉冲电源应用的理想材料。近年来,多孔PZT95/5铁电陶瓷被发现具有更优异的综合性能而引起广泛关注。本文概述了多孔PZT95/5铁电陶瓷在微结构与性能调控、冲击波加载下的响应行为以及抗冲击损伤机制等方面的最新进展。研究发现,具有合适气孔率和气孔分布的多孔PZT95/5铁电陶瓷具有优异的抗冲击损伤和耐电击穿性能;多孔脆性材料中破碎介质的"滑移与转动"变形机制增强了材料的塑性变形,从而提高了多孔材料的抗冲击损伤性能。最后,简要介绍了BNT基无铅铁电陶瓷以及PIN-PMN铁电单晶在高功率脉冲电源方面应用的研究进展,并对未来研究工作提出展望。
        Explosive pulsed powers(EPP) based on the shock-compression-induced depolarization effect of ferroelectric or piezoelectric ceramics are found important applications in the area of high pulsed power supplies. A particular lead titanate-lead zircaonate(PZT) solid solution with a Zr : Ti ratio of 95 : 5, denoted by PZT95/5, was identified as a promising material for this application. Recently, porous PZT95/5 ferroelectric ceramics are attracting more attention due to their enhanced performance under shock compression. In this article, progress of porous PZT95/5 ferroelectric ceramics in the past decades were reviewed. The dependence of porous microstructures, such as porosity, pore size and morphorlogy, pore distribution on the property were emphasized. Porous PZT95/5 ferroelectric ceramics with specific porous microstructure was found exhibiting superior performance under shock wave compression. Theoretical and experimental results found the mesoscopic mechanism for porous PZT95/5 ferroelectric ceramics to exhibit excellent shock damage resistance. In the final section, new ferroelectric candidates, such as BNT-based ferroelectric ceramics and PIN-PMN single crystal, for EPP application were also reviewed and prospective research work in the future is proposed.
引文
[1]钟维烈.铁电体物理学.北京:科学出版社,1998.
    [2]王永龄.功能陶瓷性能与应用.北京:科学出版社,2003.
    [3]贺元吉,张亚洲,李传胪.爆电换能的理论分析.国防科技大学学报,2000,22(z1):43–48.
    [4]刘高旻,刘雨生,张毅,等.PZT铁电陶瓷及其在脉冲能源中的应用.材料导报,2006,20(6):74–77.
    [5]NEILSON F W.Effects of strong shocks in ferroelectric materials.Bull.Am.Phys.Soc.,1957,2(2):302.
    [6]BERLINCOURT D,JAFFE H,KRUEGER H H A,et al.Release of electric energy in Pb Nb(Zr,Ti,Sn)O3 by temperature-and by pressure-enforced phase transitions.Applied Physics Letters,1963,3(5):90–92.
    [7]LYSNE P C,PERCIVAL C M.Electric energy generation by shock compression of ferroelectric ceramics:normal-mode response of PZT 95/5.Journal of Applied Physics,1975,46(4):1519–1525.
    [8]STORZ L J,DUNGAN R H.A Study of the Electrical,Mechanical and Microstructural Properties of 95/5 PZT as Function of Pore Former Type and Concentration,Sandia Report,SAND85-1612[R].Sandia National Laboratories,Albuquerque,NM,USA,1985.
    [9]YONGLING W,WAN-ZONG Y,GUO-RONG H,et al.Study on shock wave-explosive energy converter of PZT 95/5 ferroelectric ceramics.Ferroelectrics,1983,49(1):169–176.
    [10]FRITZ I J,KECK J D.Pressure-temperature phase diagrams for several modified lead zirconate ceramics.Journal of Physics and Chemistry of Solids,1978,39(11):1163–1167.
    [11]ALTGILBERS L L,BAIRD J,FREEMAN B,et al.Explosive Pulsed Power.London:Imperial College Press,2010.
    [12]SHKURATOV S I,BAIRD J,ANTIPOV V G,et al.Depolarization mechanisms of Pb Zr0.52Ti0.48O3 and Pb Zr0.95Ti0.05O3 poled ferroelectrics under high strain rate loading.Applied Physics Letters,2014,104(21):212901.
    [13]SHKURATOV S I,BAIRD J,TALANTSEV E F.Note:utilizing Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics to scale down autonomous explosive-driven shock-wave ferroelectric generators.Review of Scientific Instruments,2012,83(7):076104.
    [14]ALTGILBERS L L,STULTS A H,KRISTIANSEN M,et al.Recent advances in explosive pulsed power.Journal of Directed Energy,2009,3(2):149–191.
    [15]VALADEZ J C,SAHUL R,ALBERTA E,et al.The effect of a hydrostatic pressure induced phase transformation on the unipolar electrical response of Nb modified 95/5 lead zirconate titanate.Journal of applied physics,2012,111(2):024109.
    [16]JAFFE B,COOK W K,JAFFE H,et al.Piezoelectric ceramics.Academic Press,1971.
    [17]LOCKWOOD STEVE,VOIGHT JIM,PIKE RICK,et al.PZT Supply Team Goes from Basic Research to WR Production.MFG S&T Quarterly,2003,11:2.
    [18]DUNGAN R H,STORZ L J.Relation between chemical,mechanical,and electrical properties of Nb2O5-modified 95mol%Pb Zr O3-5mol%Pb Ti O3.Journal of the American Ceramic Society,1985,68(10):530–533.
    [19]TUTTLE B,VOIGT J,MOORE R.Structure-property Relationships of Antiferroelectric Pb(Zr,Ti)O3 Based Materials:Hydrostatic Depoling Characteristics.Sandia National Labs.,Albuquerque,NM(United States),1997.
    [20]TUTTLE B A,YANG P,GIESKE J H,et al.Pressure-induced phase transformation of controlled-porosity Pb(Zr0.95Ti0.05)O3 ceramics.Journal of the American Ceramic Society,2001,84(6):1260–1264.
    [21]SING K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(recommendations 1984).Pure and Applied Chemistry,1985,57(4):603–619.
    [22]STUDART A R,GONZENBACH U T,TERVOORT E,et al.Processing routes to macroporous ceramics:a review.Journal of the American Ceramic Society,2006,89(6):1771–1789.
    [23]OHJI T,FUKUSHIMA M.Macro-porous ceramics:processing and properties.International Materials Reviews,2012,57(2):115–131.
    [24]HAMMEL E C,IGHODARO O L R,OKOLI O I.Processing and properties of advanced porous ceramics:an application based review.Ceramics International,2014,40(10):15351–15370.
    [25]陈永.多孔材料制备与表征.合肥:中国科学技术大学出版社,2010.
    [26]YANG P,MOORE R H,LOCKWOOD S J BRUCE A,et al.Chem-prep PZT95/5 for Neutron Generator Applications:ehe Effect of Pore Former Type and Density on the Depoling Behavior of Chemically Prepared PZT 95/5 ceramics,Sandia Report SAND2003-0537[R].Sandia National Laboratories,Albuquerque,NM,USA,2003.
    [27]SETCHELL R E,TUTTLE B A,VOIGT J A.Effects of Microstructural Variables on the Shock Wave Response of PZT 95/5.Sandia Report SAND2003-0537.Sandia National Laboratories,Albuquerque,NM,USA,2003.
    [28]ZENG T,DONG X L,MAO C L,et al.Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics.Journal of the European Ceramic Society,2007,27(4):2025–2029.
    [29]ZENG T,WANG G,DONG X,et al.Investigation on FR(LT)–FR(HT)phase transition and pyroelectric properties of porous Zr-rich lead zirconate titante ceramics.Materials Science and Engineering:B,2007,140(1):5–9.
    [30]NIE H C,DONG X L,FENG N B,et al.Quantitative dependence of the properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics on porosity.Materials Research Bulletin,2010,45(5):564–567.
    [31]王永刚.多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变.物理学报,2015,64:134601.
    [32]蒋招绣,申海艇,辛铭之,等.多孔极化PZT95/5铁电陶瓷单轴压缩力学响应与放电特性.固体力学学报,2016,37(1):50–58.
    [33]SETCHELL R E.Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3:Hugoniot states and constitutive mechanical properties.Journal of Applied Physics,2003,94(1):573–588.
    [34]SETCHELL R E.Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3:depoling currents.Journal of Applied Physics,2005,97(1):013507.
    [35]SETCHELL R E.Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3:microstructural effects.Journal of Applied Physics,2007,101(5):053525.
    [36]FENG N,NIE H,CHEN X,et al.Depoling of porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load.Current Applied Physics,2010,10(6):1387–1390.
    [37]NIE H C,DONG X,FENG N,et al.Microgeometry effect on the properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics.Materials Research Bulletin,2011,46(8):1243–1246.
    [38]NIE H C,FENG N B,CHEN X F,et al.Enhanced ferroelectric properties of intragranular-porous Pb(Zr0.95Ti0.05)O3 ceramic fabricated with carbon nanotubes.Journal of the American Ceramic Society,2010,93(3):642–645.
    [39]NIE H C,DONG X,CHEN X,et al.Formation mechanism of intragranular pores in Pb(Zr0.95Ti0.05)O3 ferroelectric ceramic.Journal of the American Ceramic Society,2012,95(1):223–226.
    [40]NIE H C,YU Y,LIU Y,et al.Enhanced shock performance by disperse porous structure:a case study in PZT95/5 ferroelectric ceramics.Journal of the American Ceramic Society,DOI:10.1111/jace.15097,2017,1–7.
    [41]MOORE R H,HUTCHINSON M A,MONTOYA T V,et al.Method of Making and Ceramic Articles with Multiple Regions of Distinct Density:U.S.Patent 8,212,456.2012–7–3.
    [42]NIE H C,DONG X,CHEN X,et al.Enhanced performances of sandwich structure Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics for pulsed power application.Materials Research Bulletin,2014,51(9):167–170.
    [43]LYSNE P C.Dielectric breakdown of shock-loaded PZT 65/35.Journal of Applied Physics,1973,44(2):577–582.
    [44]LYSNE P C.Dielectric properties of shock-wave-compressed PZT95/5.Journal of Applied Physics,1977,48(3):1020–1023.
    [45]LYSNE P C.Resistivity of shock-wave-compressed PZT 95/5.Journal of Applied Physics,1977,48(11):4565–4568.
    [46]CHHABILDAS L C.Dynamic Shock Studies of PZT 95/5 Ferroelectric Ceramic.Sandia Report,SAND84-1729.Sandia National Laboratories,Albuquerque,NM,USA,1984.
    [47]CHHABILDAS L C,CARR M J,KUNZ S C,et al.Shock Recovery Experiments on PZT 95/5.Sandia Report,SAND85-0406C.Sandia National Laboratories,Albuquerque,NM,USA,1985.
    [48]HALPIN W J.Resistivity estimates for some shocked ferroelectrics.Journal of Applied Physics,1968,39(8):3821–3826.
    [49]TKACH Y,SHKURATOV S I,TALANTSEV E F,et al.Theoretical treatment of explosive-driven ferroelectric generators.IEEE Transactions On Plasma Science,2002,30(5):1665–1673.
    [50]ZHANG F,HE H,LIU G,et al.Failure behavior of Pb(Zr0.95Ti0.05)O3ferroelectric ceramics under shock compression.Journal of Applied Physics,2013,113(18):183501.
    [51]ZHANG F,LIU Y,XIE Q,et al.Electrical response of Pb(Zr0.95Ti0.05)O3under shock compressions.Journal of Applied Physics,2015,117(13):134104.
    [52]NIE H C,YANG J,CHEN X,et al.Mechanical induced electrical failure of shock compressed PZT95/5 ferroelectric ceramics.Current Applied Physics,2017,17(4):448–453.
    [53]喻寅,王文强,杨佳,等.多孔脆性介质冲击波压缩破坏的细观机理和图像.物理学报,2012,61(4):48103.
    [54]YU Y,WANG W,HE H,et al.Mesoscopic deformation features of shocked porous ceramic:polycrystalline modeling and experimental observations.Journal of Applied Physics,2015,117(12):125901.
    [55]YU Y,WANG W,HE H,et al.Modeling multiscale evolution of numerous voids in shocked brittle material.Physical Review E,2014,89(4):043309.
    [56]喻寅,贺红亮,王文强,等.含微孔洞脆性材料的冲击响应特性与介观演化机制.物理学报,2014,63(24):246102.
    [57]喻寅,贺红亮,王文强,等.多孔脆性材料对高能量密度脉冲的吸收和抵抗能力.物理学报,2015,64(12):124302.
    [58]JIANG T,YU Y,HE H,et al.Macroscopic shock plasticity of brittle material through designed void patterns.Journal of Applied Physics,2016,119(9):095905.
    [59]RICE R W.The Porosity Dependence of Physical Properties of Materials:a Summary Review,Key Engineering Materials.Zürich Trans Tech Publications,1996,115:1–20.
    [60]LIU Z,REN W,NIE H,et al.Pressure driven depolarization behavior of Bi0.5Na0.5Ti O3 based lead-free ceramics.Applied Physics Letters,2017,110(21):212901.
    [61]SHKURATOV S I,BAIRD J,ANTIPOV V G,et al.Ultrahigh energy density harvested from domain-engineered relaxor ferroelectric single crystals under high strain rate loading.Scientific Reports,2017,7:46758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700