乙醇助燃剂燃烧环境中Q235碳钢的氧化行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Oxidation Behavior of Q235 Carbon Steel in Ethanol Combustion Gas
  • 作者:洪昊 ; 多树旺 ; 谢冬柏
  • 英文作者:HONG Hao;DUO Shuwang;XIE Dongbai;Jiangxi Key Laboratory of Materials Surface Engineering, Jiangxi Science and Technology Normal University;Department of Forensic Science, Xinjiang Police College;
  • 关键词:Q235碳钢 ; 乙醇 ; 氧化 ; 碳沉积 ; 氧化层 ; 火灾调查
  • 英文关键词:Q235 carbon steel;;ethanol;;oxidation;;carbon deposition;;oxide layer;;fire investigation
  • 中文刊名:FSFJ
  • 英文刊名:Corrosion Science and Protection Technology
  • 机构:江西科技师范大学江西省材料表面工程重点实验室;新疆警察学院刑事科学技术系;
  • 出版日期:2019-03-15
  • 出版单位:腐蚀科学与防护技术
  • 年:2019
  • 期:v.31
  • 基金:痕迹检验鉴定技术公安部重点实验室项目;; 公安部科技强警基础工作专项(2017GABJC11);; 江西省材料表面工程重点实验室开放基金;; 江西科技师范大学研究生创新基金项目(YC2018-X02)~~
  • 语种:中文;
  • 页:FSFJ201902015
  • 页数:7
  • CN:02
  • ISSN:21-1264/TQ
  • 分类号:94-100
摘要
研究了常用的碳素结构钢在乙醇助燃剂火场环境气氛中的高温氧化行为,以期为初步判断典型火场温度、燃烧时间以及是否存在助燃剂提供依据。对Q235碳钢分别在乙醇燃烧气氛中进行5,10,20和30 min的氧化实验,并实测温度曲线,分析了其氧化行为和氧化层中单质碳的形成特点。结果表明,Q235碳钢在乙醇燃烧环境中形成网状氧化层,随时间的增加而发生起皱和剥落,在表面氧化层未检测到FeO物相;在氧化层和基体界面处沉积有游离状的碳单质,并且随着氧化时间的增加,碳含量增加。本实验温度条件下未形成FeO物相,氧化物的相组成特点可为火场的燃烧温度判别提供参考;乙醇热解产生的单质碳多沉积于表面能高的区域,如基体和氧化层界面处,也可为火灾现场是否使用乙醇助燃剂提供判断依据。
        Metallic materials exposed in fire scene environments are usually subjected to severe high temperature oxidation, thus they may usually be utilized as reference to judge the fire environment.In order to reveal the history of burning time and temperature of the fire scene as well as to judge if any combustion accelerant has existed in the scene, the present paper focused on the high temperature oxidation behavior of Q235 carbon steel in a simulated fire environment resulted from combustion of ethanol. Namely, Q235 carbon steel was oxidized for 5, 10, 20 and 30 min in the ethanol flue gas. During the oxidation process, oxidation temperature curve was recorded automatically. The oxidation behavior of Q235 carbon steel in such environment, especially the formation and distribution of carbon on the oxidized steel are examined. The obtained results slow that a mesh-like oxide scale formed on the surface of Q235 carbon steel in the simulated environment, meanwhile, with the increase of oxidation time, the oxide scale twinkled and gradually spalled off. Meanwhile, no FeO was detected in the oxide scale. It was found that free carbon accumulated along the interface of oxide scale/substrate, and the amount of which increased with the increasing time. The fact that FeO did not formed under the experimental conditions may be considered as a criterion for judging the combustion temperature in the practical fire scene. On the other hand, the free carbon caused by pyrolysis of ethanol was deposited on the area with high surface energy, such as the interface of oxide scale/substrate, which would provide a reference for determining the presence of combustion accelerant in the fire scene as well.
引文
[1] Xu L, Zhang H P, Yang Y, et al. Study on fire design in perfor‐mance-based design[J]. Eng. Sci., 2004, 6(1):64(徐亮,张和平,杨昀等.性能化防火设计中火灾场景设置初步研究[J].中国工程科学, 2004, 6(1):64)
    [2] Eric Stauffer M S, Doug Byron B S. Alternative fuels in fire debris analysis:Biodiesel basics[J]. J. Forensic Sci., 2007, 52:371
    [3] Liu J, Zhang G X, Ye N S, et al. Advance on extraction and detec‐tion of ignitable liquid residues in fire debris[J]. Chemistry, 2009,72:871(刘剑,张桂霞,叶能胜等.火灾现场残留物中助燃剂提取及检测方法研究进展[J].化学通报, 2009, 72:871)
    [4] Huang Y, Yang V. Dynamics and stability of lean-premixed swirlstabilized combustion[J]. Prog. Energy Combust. Sci., 2009,35:293
    [5] Xie D B, Shan G. Rapid identification of liquid accelerant in fire scene environment[J]. J. Chin. Soc. Corros. Prot., 2017, 37:74(谢冬柏,单国.燃油火场环境中助燃剂的快速检验方法研究[J].中国腐蚀与防护学报, 2017, 37:74)
    [6] Colwell J D, Babic D. A review of oxidation on steel surfaces in the context of fire investigations[J]. SAE Int. J. Passeng. Cars Mech.Syst., 2012, 5:1002
    [7] Boniardi M, Casaroli A. In-depth approach to fire investigations:microstructural analysis of metallic materials[J]. FAM, 2015,39:600
    [8] Li J, Su H, Chai F, et al. Simulated corrosion test of Q235 steel in diatomite soil[J]. J. Iron. Steel. Res. Int., 2015, 22:352
    [9] Birks N, Meier G H, Pettit F S. Introduction to the High-Tempera‐ture Oxidation of Metals[M]. New York:Cambridge University Press, 2006:83
    [10] Wang B, Wu J, Zhang Y F, et al. High-temperature oxidation of Q235 low-carbon steel treated by plasma electrolytic borocarburiz‐ing[J]. Surf. Coat. Technol., 2015, 269:302
    [11] Gao Z C, Wang Z Y. The mechanism of alcohol combustion reac‐tion[J]. J. Liaoning Univ.(Nat. Sci. Ed.), 2003, 30:63(高志崇,王子瑛.醇燃烧反应机理探讨[J].辽宁大学学报(自然科学版), 2003, 30:63)
    [12] Xie D B, Wushur W, Wang Z, et al. Effect of combustion adju‐vants in fire scene environments on high temperature corrosion of carbon steel[J]. Corros. Sci. Prot. Technol., 2017, 29:15(谢冬柏,吾提克尔·吾守尔,王震等.助燃剂火场环境中钢的高温腐蚀行为研究[J].腐蚀科学与防护技术, 2017, 29:15)
    [13] Yun J Y, Ha S A, Kang C Y, et al. Oxidation behavior of low car‐bon steel at elevated temperature in oxygen and water vapor[J].Steel. Res. Int., 2013, 84:1252
    [14] Abuluwefa H T, Guthrie R I L, Ajersch F. Oxidation of low carbon steel in multicomponent gases:part I. Reaction mechanisms during isothermal oxidation[J]. Metall. Mater. Trans., 1997, 28A:1633
    [15] Xie D B, Shan G, Lv S L. Oxidation behavior of carbon steel in simulated kerosene combustion atmosphere:A valuable tool for fire investigations[J]. FAM, 2018, 42:156
    [16] Zhu H B, Li Z H, Liu Z Y, et al. Synthesis of carbon nanotubes by decomposing alcohol[J]. Acta Phys.-Chim. Sin., 2004, 20:191(朱海滨,李振华,刘子阳等.利用无水乙醇分解制备碳纳米管[J].物理化学学报, 2004, 20:191)
    [17] Levin E M, Robbins C R, McMurdie H F. Phase Diagrams for Ce‐ramists[M]. 2nd Ed. Columbus:The American Ceramic Society,1969:38
    [18] Hao R R, Fan X Y, Niu S C. Inorganic Chemistry Series(Volume III)[M]. Beijing:China Science Publishing&Media Ltd, 1988:17(郝润蓉,方锡义,钮少冲.无机化学丛书(第三卷)碳硅锗分族[M].北京:科学出版社, 1988:17)
    [19] Li F, Li W C. Metallurgy and Materials Thermodynamics[M]. Bei‐jing:Metallurgical Industry Press, 2012:86(李钒,李文超.冶金与材料热力学[M].北京:冶金工业出版社,2012:86)
    [20] Pan Y F, Sun S P. Oxidation and decarburization in protecting at‐mosphere of heat treatment[J]. Wood Proc. Mach., 2007, 18(1):4(潘一凡,孙松平.保护气氛热处理中的氧化脱碳[J].木材加工机械, 2007, 18(1):4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700