不同定义的湿位涡分析及在台风中的诊断
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Various Moist Potential Vorticities with Different Definitions and Comparison of Their Diagnoses in a Typhoon Process
  • 作者:刘赛赛 ; 张立凤 ; 赵艳玲
  • 英文作者:LIU Saisai;ZHANG Lifeng;ZHAO Yanling;Unit 31010 of PLA;The PLA Research Center of Dangerous Weather Monitoring and Warning/College of Meteorology and Oceanography, National University of Defense Technology;
  • 关键词:湿位涡 ; 位温 ; 干湿分量 ; 台风 ; 诊断
  • 英文关键词:Moist potential vorticity;;Potential temperature;;Dry and moist component;;Typhoon;;Diagnosis
  • 中文刊名:DQXK
  • 英文刊名:Chinese Journal of Atmospheric Sciences
  • 机构:中国人民解放军31010部队;全军危险性天气监测预警研究中心/国防科技大学气象海洋学院;
  • 出版日期:2019-05-15
  • 出版单位:大气科学
  • 年:2019
  • 期:v.43
  • 基金:北极阁开放研究基金-南京大气科学联合研究中心NJCAR2018ZD03;; 国家自然科学基金项目41775123、41705037~~
  • 语种:中文;
  • 页:DQXK201903008
  • 页数:12
  • CN:03
  • ISSN:11-1768/O4
  • 分类号:102-113
摘要
本文对不同定义的湿位涡做了理论分析,并利用1522号台风"彩虹"的数值模拟结果对各种湿位涡进行了诊断。主要结论有:经典湿位涡、广义湿位涡和改进湿位涡的差异主要是由不同定义的位温造成的,相当位温、广义位温和修改位温的构成均是在位温基础上添加一显含水汽的附加量;经典湿位涡、广义湿位涡和改进湿位涡的构成均能分为干、湿分量两部分,其干分量表达式相同,都与Ertel干位涡的定义一样,水物质相变潜热的影响隐含在位温中;不同定义湿位涡的本质差异表现在不同的湿分量上,湿分量的表达式中显含了水物质的作用。对台风的诊断分析发现,改进湿位涡分布与Ertel干位涡非常相似,呈现中空分布的位涡塔结构,大值区对应眼墙内侧,改进湿位涡湿分量与经典湿位涡的湿分量分布相似,只是湿分量的绝对值更小,这反映了改进湿位涡既能保持干位涡的分布特征,其分布和演变可反映台风的结构和演变,又能合理地体现水汽分布的影响,所以在台风诊断中有更广泛的应用前景。经典湿位涡在低层表现为负值,这与水汽梯度的分布关系很大,但与垂直速度、潜热加热大值区等都没有很好的匹配关系,用其分析台风结构和演变具有一定局限性;广义湿位涡其形式较复杂,仅在近饱和区域才能发挥其诊断优势。
        In this paper, various moist potential vorticities with different definitions are theoretically analyzed and numerically diagnosed based on the simulation of typhoon Mujigae(1522). The results show that the differences between the equivalent potential vorticity, the generalized moist potential vorticity and the modified moist potential vorticity are mainly caused by the potential temperature that is defined differently. An additional variable with explicit water vapor is added to the conventionally defined potential temperature. The equivalent potential vorticity, the generalized moist potential vorticity and the modified moist potential vorticity can be divided into two parts: the dry component and the moist component. The dry components of these moist potential vorticities are the same as the Ertel potential vorticity and implicitly contain the effect of latent heat in phase changes. The essential difference between these moist potential vorticities is reflected in their moist components, which can explicitly contain the effect of water vapor. Based on simulation results and diagnostic analysis of these vorticities in the typhoon process, it is found that the distribution of the modified moist potential vorticity is like a"hollow tower"and the high value area is located inside of the eye wall, which is very similar to that of the Ertel potential vorticity. And the distribution of the moist component of the modified moist potential vorticity is also very similar to that of the equivalent potential vorticity, but the absolute value of the former is smaller. These results indicate that the modified moist potential vorticity can maintain the characteristics of the original Ertel potential vorticity. It can not only reflect the structure and intensity changes of the typhoon but also reflect the influence of water vapor distribution reasonably. As shown above, the modified moist potential vorticity has a potential application for the diagnosis and forecast of typhoons. The value of the equivalent potential vorticity is negative in the low level, which is largely related to the distribution of water vapor gradient. Note that the equivalent potential vorticity doesn't have a good matching relationship with vertical velocity, latent heating and other factors, which limits its application in analyzing the typhoon structure and evolution. The generalized moist potential vorticity has a complex form and only has some diagnostic advantages in nearly saturated condition.
引文
Abdel-Basset H,Al-Khalaf A K,Albar A.2015.Diabatic processes and the generation of the low-level potential vorticity anomaly of a rainstorm in Saudi Arabia[J].Atmospheric and Climate Sciences,5(3):57887.doi:10.4236/acs.2015.53021
    Bennetts D A,Hoskins B J.1979.Conditional symmetric instabilityA possible explanation for frontal rainbands[J].Quart.J.Roy.Meteor.Soc.,105(446):945-962.doi:10.1002/qj.49710544615
    Deng D F,Davidson N E,Hu L,et al.2017.Potential vorticity perspective of vortex structure changes of tropical cyclone Bilis(2006)during a heavy rain event following landfall[J].Mon.Wea.Rev.,145(5):1875-1895.doi:10.1175/MWR-D-16-0276.1
    Eliassen A,Kleinschmidt E.1957.Dynamic Meteorology[M]//Bartels J.Geophysik II/Geophysics II.Handbuch der Physik/Encyclopedia of Physics,vol10/48:112-129
    Ertel H.1942.Ein Neuer Hydrodynamischer Wirbelsatz[J].Meteorology Zeitschr Braunchweigs(in German),59:271-281
    Galarneau T J Jr,Mctaggart-Cowan R,Bosart L F,et al.2015.Development of North Atlantic tropical disturbances near upperlevel potential vorticity streamers[J].J.Atmos.Sci.,72(2):572-597.doi:10.1175/JAS-D-14-0106.1
    Gao S T,Wang X R,Zhou Y S.2004.Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow[J].Geophys.Res.Lett.,31(12):L12113.doi:10.1029/2003GL019152
    高守亭,崔春光.2007.广义湿位涡理论及其应用研究[J].暴雨灾害,26(1):5-10.Gao Shouting,Cui Chunguang.2007.The theory of generalized moist potential vorticity and its applicative study[J].Torrential Rain and Disasters(in Chinese),26(1):5-10.doi:10.3969/j.issn.1004-9045.2007.01.002
    Hendricks E A,Schubert W H.2010.Adiabatic rearrangement of hollow PV towers[J].Journal of Advances in Modeling Earth Systems,2(4):8.doi:10.3894/JAMES.2010.2.8
    Hoskins B J,Mclntyre M E,Robertson A W.1985.On the use and significance of isentropic potential vorticity maps[J].Quart.J.Roy.Meteor.Soc.,111(470):877-946.doi:10.1002/qj.49711147002
    黄亿,寿绍文,傅灵艳.2009.对一次台风暴雨的位涡与湿位涡诊断分析[J].气象,35(1):65-73.Huang Yi,Shou Shaowen,Fu Lingyan.2009.A diagnostic analysis of PV and MPV on the heavy rain caused by typhoon Khanun[J].Meteorological Monthly(in Chinese),35(1):65-73.doi:10.7519/j.issn.1000-0526.2009.1.008
    Huang Z Y,Wang J Y,Lee C.2016.Landfall tropical cyclone rainstorms on the north slope of the Dabie Mountains[J]Conference Series:Earth and Environmental Science,39(1):012047.doi:10.1088/1755-1315/39/1/012047
    赖绍钧,何芬,赵汝汀,等.2007.“龙王”(LONGWANG)台风过程湿位涡的诊断分析[J].气象科学,27(3):266-271.Lai Shaojun,He Fen,Zhao Ruting,et al.2007.The diagnostic analysis of“Long Wang”typhoon[J].Journal of the Meteorological Sciences(in Chinese),27(3):266-271.doi:10.3969/j.issn.1009-0827.2007.03.005
    李静楠,潘晓滨,臧增亮,等.2016.一次华北暴雨过程的湿位涡诊断分析[J].暴雨灾害,35(2):158-165.Li Jingnan,Pan Xiaobin,Zang Zengliang,et al.2016.Diagnostic analysis of moist potential vorticity for a rainstorm in North China[J].Torrential Rain and Disasters(in Chinese),35(2):158-165.doi:10.3969/j.issn.1004-9045.2016.02.008
    李英,陈联寿,雷小途.2005.Winnie(1997)和Bilis(2000)变性过程的湿位涡分析[J].热带气象学报,21(2):142-152.Li Ying,Chen Lianshou,Lei Xiaotu.2005.Moisture potential vorticity analysis on the extratropical transition processes of Winnie(1997)and Bilis(2000)[J].Journal of Tropical Meteorology(in Chinese),21(2):142-152.doi:10.3969/j.issn.1004-4965.2005.02.004
    Liang Z M,Lu C G,Tollerud E I.2010.Diagnostic study of generalized moist potential vorticity in a non-uniformly saturated atmosphere with heavy precipitation[J].Quart.J.Roy.Meteor.Soc.,136(650):1275-1288.doi:10.1002/qj.636
    刘赛赛.2017.台风“彩虹”近海急剧加强的数值模拟及诊断分析[D].解放军理工大学硕士学位论文.Liu Saisai.2017.Numerical simulation and diagnostic analysis on the rapid intensification of typhoon Mujigae(1522)over the offshore area of China[D].M.S.thesis(in Chinese),PLA University of Science and Technology
    Martinez J,Bell M M,Vigh J L,et al.2017.Examining tropical cyclone structure and intensification with the FLIGHT+dataset from1999 to 2012[J].Mon.Wea.Rev.,145(11):4401-4421.doi:10.1175/MWR-D-17-0011.1
    Menelaou K,Yau M K,Martinez Y.2013.On the origin and impact of a polygonal eyewall in the rapid intensification of hurricane Wilma(2005)[J].J.Atmos.Sci.,70(12):3839-3858.doi:10.1175/JAS-D-13-091.1
    蒙伟光,王安宇,李江南,等.2004.华南暴雨中尺度对流系统的形成及湿位涡分析[J].大气科学,28(3):330-341.Meng Weiguang,Wang Anyu,Li Jiangnan,et al.2004.Moist potential vorticity analysis of the heavy rainfall and mesoscale convective systems in South China[J].Chinese Journal of Atmospheric Sciences(in Chinese),28(3):330-341.doi:10.3878/j.issn.1006-9895.2004.03.02
    M?ller J D,Smith R K.1994.The development of potential vorticity in a hurricane-like vortex[J].Quart.J.Roy.Meteor.Soc.,120(519):1255-1265.doi:10.1002/qj.49712051907
    Peng J,Zhang L F,Zhang Y,et al.2013.A modified moist potential vorticity,its properties,and application[J].J.Geophys.Res.,118(23):12999-13007.doi:10.1002/2013JD020204
    Schubert W H,Alworth B T.1987.Evolution of potential vorticity in tropical cyclones[J].Quart.J.Roy.Meteor.Soc.,113(475):147-162.doi:10.1002/qj.49711347509
    Schubert W H,Hausman S A,Garcia M,et al.2001.Potential vorticity in a moist atmosphere[J].J.Atmos.Sci.,58(21):3148-3157.doi:10.1175/1520-0469(2001)058<3148:PVIAMA>2.0.CO;2
    Schubert W H,Montgomery M T,Taft R K,et al.1999.Polygonal eyewalls,asymmetric eye contraction,and potential vorticity mixing in hurricanes[J].J.Atmos.Sci.,56(9):1197-1223.doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2
    Schubert W H,Slocum C J,Taft R K.2016.Forced,balanced model of tropical cyclone intensification[J].J.Meteor.Soc.Japan,94(2):119-135.doi:10.2151/jmsj.2016-007
    Smith R K,Montgomery M T.2016.The efficiency of diabatic heating and tropical cyclone[J].Quart.J.Roy.Meteor.Soc.,142(698):2081-2086.doi:10.1002/qj.2804
    王伏村,许东蓓,王宝鉴,等.2013.敦煌致洪暴雨的广义湿位涡分析[J].高原气象,32(1):145-155.Wang Fucun,Xu Dongbei,Wang Baojian,et al.2013.Diagnostic analysis on generalized moist potential vorticity of a torrential rainstorm caused flood in Dunhuang,Gansu[J].Plateau Meteorology(in Chinese),32(1):145-155.doi:10.7522/j.issn.1000-0534.2012.00015
    王宏,王万筠,余锦华,等.2012.河北东北部暴雪天气过程的湿位涡分析[J].高原气象,31(5):1302-1308.Wang Hong,Wang Wanjun,Yu Jinhua,et al.2012.Analysis on moist potential vorticity for snowstorm process in the northeast of Hebei Province[J].Plateau Meteorology(in Chinese),31(5):1302-1308
    王兴荣,吴可军,石春娥.1999.凝结几率函数的引进和非均匀饱和湿空气动力学方程组[J].热带气象学报,15(1):64-70.Wang Xingrong,Wu Kejun,Shi Chun'e.1999.The introduction of condensation probability function and the dynamic equations on nonuniform saturated moist air[J].Journal of Tropical Meteorology(in Chinese),15(1):64-70
    徐文慧,倪允琪,汪小康,等.2010.登陆台风内中尺度强对流系统演变机制的湿位涡分析[J].气象学报,68(1):88-101.Xu Wenhui,Ni Yunqi,Wang Xiaokang,et al.2010.Moist potential vorticity analysis of the evolution mechanism of a strong mesoscale convective system in a landing typhoon[J].Acta Meteorologica Sinica(in Chinese),68(1):88-101.doi:10.11676/qxxb2010.010
    Yau M K,Liu Y B,Zhang D L,et al.2004.A multiscale numerical study of hurricane Andrew(1992).Part VI:Small-scale inner-core structures and wind streaks[J].Mon.Wea.Rev.,132(6):1410-1433.doi:10.1175/1520-0493(2004)132<1410:AMNSOH>2.0.CO;2
    张立凤,彭军.2017.湿大气中尺度能量谱理论和应用[M].气象出版社,19-23.Zhang Lifeng,Peng Jun.2017.Theory and Applications of Mesoscale Energy Spectrum in Moist Atmosphere(in Chinese)[M].Beijing:China Meteorological Press,19-23
    张晓红,罗静,陈兴,等.2016.一次春季江淮气旋形成发展特征及暴雨诊断分析[J].气象,42(6):716-723.Zhang Xiaohong,Luo Jing,Chen Xing,et al.2016.Formation and development mechanism of one cyclone over Changjiang-Huaihe River basin and diagnostic analysis of rainstorm[J].Meteorological Monthly(in Chinese),42(6):716-723.doi:10.7519/j.issn.1000-0526.2016.06.007
    周玉淑.2009.广义湿位涡在江淮流域暴雨分析和预报中的应用[J].大气科学,33(5):1101-1110.Zhou Yushu.2009.Application of generalized moist potential vorticity to analysis and forecast of the torrential rain over the Changjiang-Huaihe River basin[J].Chinese Journal of Atmospheric Sciences(in Chinese),33(5):1101-1110.doi:10.3878/j.issn.1006-9895.2009.05.19
    周泓,尤红,李璠,等.2013.2012年初夏滇中首场暴雨过程诊断分析[J].应用气象学报,(6):741-752.Zhou Hong,You Hong,Li Fan,et al.2013.Diagnostic analysis on the first summer rainstorm process of central Yunnan in 2012[J].Journal of Applied Meteorological Science(in Chinese),24(6):741-752.doi:10.3969/j.issn.1001-7313.2013.06.011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700