Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector
  • 作者:ZHIQIANG ; YANG ; KANG ; DU ; FANFAN ; LU ; YANG ; PANG ; SHIJIA ; HUA ; XUETAO ; GAN ; WENDING ; ZHANG ; SOO ; JIN ; CHUA ; TING ; MEI
  • 英文作者:ZHIQIANG YANG;KANG DU;FANFAN LU;YANG PANG;SHIJIA HUA;XUETAO GAN;WENDING ZHANG;SOO JIN CHUA;TING MEI;Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology,School of Science, Northwestern Polytechnical University;Department of Electrical and Computer Engineering, National University of Singapore;LEES Program, Singapore-MIT Alliance for Research & Technology (SMART);
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology,School of Science, Northwestern Polytechnical University;Department of Electrical and Computer Engineering, National University of Singapore;LEES Program, Singapore-MIT Alliance for Research & Technology (SMART);
  • 出版日期:2019-03-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Natural Science Foundation of China(NSFC)(61675171,61675169,61522507);; Fundamental Research Funds for the Central Universities of China(3102017HQZZ022,3102017zy021);; Shaanxi Provincical Key R&D Program(2018KW-009)
  • 语种:英文;
  • 页:GZXJ201903009
  • 页数:6
  • CN:03
  • ISSN:31-2126/O4
  • 分类号:60-65
摘要
Plasmon induced hot electrons have attracted a great deal of interest as a novel route for photodetection and lightenergy harvesting. Herein, we report a hot electron photodetector in which a large array of nanocones deposited sequentially with aluminum, titanium dioxide, and gold films can be integrated functionally with nanophotonics and microelectronics. The device exhibits a strong photoelectric response at around 620 nm with a responsivity of 180 μA/W under short-circuit conditions with a significant increase under 1 V reverse bias to 360 μA/W. The increase in responsivity and a red shift in the peak value with increasing bias voltage indicate that the bias causes an increase in the hot electron tunneling effect. Our approach will be advantageous for the implementation of the proposed architecture on a vast variety of integrated optoelectronic devices.
        Plasmon induced hot electrons have attracted a great deal of interest as a novel route for photodetection and lightenergy harvesting. Herein, we report a hot electron photodetector in which a large array of nanocones deposited sequentially with aluminum, titanium dioxide, and gold films can be integrated functionally with nanophotonics and microelectronics. The device exhibits a strong photoelectric response at around 620 nm with a responsivity of 180 μA/W under short-circuit conditions with a significant increase under 1 V reverse bias to 360 μA/W. The increase in responsivity and a red shift in the peak value with increasing bias voltage indicate that the bias causes an increase in the hot electron tunneling effect. Our approach will be advantageous for the implementation of the proposed architecture on a vast variety of integrated optoelectronic devices.
引文
1.Y.Takahashi and T.Tatsuma,“Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,”Appl.Phys.Lett.99,182110(2011).
    2.Y.K.Lee,H.Lee,C.Lee,E.Hwang,and J.Y.Park,“Hot-electronbased solar energy conversion with metal-semiconductor nanodiodes,”J.Phys.Condens.Matter 28,254006(2016).
    3.J.M.Stern,J.Stanfeld,W.Kabbani,J.-T.Hsieh,and J.A.Cadeddu,“Selective prostate cancer thermal ablation with laser activated gold nanoshells,”J.Urol.179,748-753(2008).
    4.S.Mubeen,J.Lee,N.Singh,S.Kramer,G.D.Stucky,and M.Moskovits,“An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,”Nat.Nanotechnol.8,247-251(2013).
    5.S.Mukherjee,F.Libisch,N.Large,O.Neumann,L.V.Brown,J.Cheng,J.B.Lassiter,E.A.Carter,P.Nordlander,and N.J.Halas,“Hot electrons do the impossible:plasmon-induced dissociation of H2on Au,”Nano Lett.13,240-247(2013).
    6.W.Li and J.G.Valentine,“Harvesting the loss:surface plasmonbased hot electron photodetection,”Nanophotonics 6,177-191(2017).
    7.Y.P.Huang and L.A.Wang,“In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes,”Appl.Phys.Lett.106,191106(2015).
    8.S.Muehlbrandt,A.Melikyan,T.Harter,K.K?hnle,A.Muslija,P.Vincze,S.Wolf,P.Jakobs,Y.Fedoryshyn,W.Freude,J.Leuthold,C.Koos,and M.Kohl,“Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,”Optica 3,741-747(2016).
    9.Z.Yang,M.Liu,S.Liang,W.Zhang,T.Mei,D.Zhang,and S.J.Chua,“Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection,”Opt.Express 25,20268-20273(2017).
    10.T.Gong and J.N.Munday,“Aluminum-based hot carrier plasmonics,”Appl.Phys.Lett.110,021117(2017).
    11.Y.Liu,X.Zhang,J.Su,H.Li,Q.Zhang,and Y.Gao,“Ag nanoparticles@ZnO nanowire composite arrays:an absorption enhanced UV photodetector,”Opt.Express 22,30148-30155(2014).
    12.H.Li,X.Zhang,N.Liu,L.Ding,J.Tao,S.Wang,J.Su,L.Li,and Y.Gao,“Enhanced photo-response properties of a single ZnO microwire photodetector by coupling effect between localized Schottky barriers and piezoelectric potential,”Opt.Express 23,21204-21212(2015).
    13.M.L.Brongersma,N.J.Halas,and P.Nordlander,“Plasmon-induced hot carrier science and technology,”Nat.Nanotechnol.10,25-34(2015).
    14.H.Chalabi and M.L.Brongersma,“Plasmonics:harvest season for hot electrons,”Nat.Nanotechnol.8,229-230(2013).
    15.I.Goykhman,B.Desiatov,J.Khurgin,J.Shappir,and U.Levy,“Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,”Nano Lett.11,2219-2224(2011).
    16.Y.K.Lee,C.H.Jung,J.Park,H.Seo,G.A.Somorjai,and J.Y.Park,“Surface plasmon-driven hot electron flow probed with metalsemiconductor nanodiodes,”Nano Lett.11,4251-4255(2011).
    17.B.Desiatov,I.Goykhman,N.Mazurski,J.Shappir,J.B.Khurgin,and U.Levy,“Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,”Optica 2,335-338(2015).
    18.M.W.Knight,Y.Wang,A.S.Urban,A.Sobhani,B.Y.Zheng,P.Nordlander,and N.J.Halas,“Embedding plasmonic nanostructure diodes enhances hot electron emission,”Nano Lett.13,1687-1692(2013).
    19.W.Li,Z.J.Coppens,L.V.Besteiro,W.Wang,A.O.Govorov,and J.Valentine,“Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,”Nat.Commun.6,8379(2015).
    20.M.W.Knight,H.Sobhani,P.Nordlander,and N.J.Halas,“Photodetection with active optical antennas,”Science 332,702-704(2011).
    21.A.Sobhani,M.W.Knight,Y.Wang,B.Zheng,N.S.King,L.V.Brown,Z.Fang,P.Nordlander,and N.J.Halas,“Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,”Nat.Commun.4,1643(2013).
    22.K.T.Lin,H.L.Chen,Y.S.Lai,and C.C.Yu,“Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,”Nat.Commun.5,3288(2014).
    23.W.Li and J.Valentine,“Metamaterial perfect absorber based hot electron photodetection,”Nano Lett.14,3510-3514(2014).
    24.F.Pelayo García de Arquer,A.Mih,and G.Konstantatos,“Large-area plasmonic-crystal-hot-electron-based photodetectors,”ACS Photon.2,950-957(2015).
    25.H.Lee,Y.K.Lee,E.Hwang,and J.Y.Park,“Enhanced surface plasmon effect of Ag/TiO2nanodiodes on internal photoemission,”J.Phys.Chem.C 118,5650-5656(2014).
    26.M.G.Ramchandani,“Energy band structure of gold,”J.Phys.C 3,1S(1970).
    27.P.Moitra,B.A.Slovick,W.Li,I.I.Kravchencko,D.P.Briggs,S.Krishnamurthy,and J.Valentine,“Large-scale all-dielectric metamaterial perfect reflectors,”ACS Photon.2,692-698(2015).
    28.P.Gao,J.He,S.Zhou,X.Yang,S.Li,J.Sheng,D.Wang,T.Yu,J.Ye,and Y.Cui,“Large-area nanosphere self-assembly by a micropropulsive injection method for high throughput periodic surface nanotexturing,”Nano Lett.15,4591-4598(2015).
    29.C.-M.Hsu,S.T.Connor,M.X.Tang,and Y.Cui,“Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,”Appl.Phys.Lett.93,133109(2008).
    30.J.Hao,L.Zhou,and M.Qiu,“Nearly total absorption of light and heat generation by plasmonic metamaterials,”Phys.Rev.B 83,165107(2011).
    31.R.H.Fowler,“The analysis of photoelectric sensitivity curves for clean metals at various temperatures,”Phys.Rev.38,45-56(1931).
    32.C.Scales and P.Berini,“Thin-film Schottky barrier photodetector models,”IEEE J.Quantum Electron.46,633-643(2010).
    33.C.Clavero,“Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,”Nat.Photonics 8,95-103(2014).
    34.H.Chalabi,D.Schoen,and M.L.Brongersma,“Hot-electron photodetection with a plasmonic nanostripe antenna,”Nano Lett.14,1374-1380(2014).
    35.T.Gong and J.N.Munday,“Angle-independent hot carrier generation and collection using transparent conducting oxides,”Nano Lett.15,147-152(2015).
    36.J.G.Simmons,“Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,”J.Appl.Phys.34,1793-1803(1963).
    37.J.C.Fisher and I.Giaever,“Tunneling through thin insulating layers,”J.Appl.Phys.32,172-177(1961).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700