ZrC-ZrB_2-SiC ceramic nanocomposites derived from a novel single-source precursor with high ceramic yield
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ZrC-ZrB_2-SiC ceramic nanocomposites derived from a novel single-source precursor with high ceramic yield
  • 作者:Zhaoju ; YU ; Xuan ; LV ; Shuyi ; LAI ; Le ; YANG ; Wenjing ; LEI ; Xingang ; LUAN ; Ralf ; RIEDEL
  • 英文作者:Zhaoju YU;Xuan LV;Shuyi LAI;Le YANG;Wenjing LEI;Xingang LUAN;Ralf RIEDEL;College of Materials, Key Laboratory of High Performance Ceramic Fibers (Xiamen University), Ministry of Education;College of Materials, Fujian Key Laboratory of Advanced Materials (Xiamen University);College of Materials Science and Engineering, Huaqiao University;Science and Technology on Thermostructural Composite Materials Laboratory,Northwestern Polytechnical University;Technische Universit?t Darmstadt, Institut für Materialwissenschaft;
  • 英文关键词:polymer derived ceramics;;single-source precursor;;ceramic nanocomposite
  • 中文刊名:JOAC
  • 英文刊名:先进陶瓷(英文)
  • 机构:College of Materials, Key Laboratory of High Performance Ceramic Fibers (Xiamen University), Ministry of Education;College of Materials, Fujian Key Laboratory of Advanced Materials (Xiamen University);College of Materials Science and Engineering, Huaqiao University;Science and Technology on Thermostructural Composite Materials Laboratory,Northwestern Polytechnical University;Technische Universit?t Darmstadt, Institut für Materialwissenschaft;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Advanced Ceramics
  • 年:2019
  • 期:v.8
  • 基金:National Natural Science Foundation of China (No. 51872246);; Alexander von Humboldt Foundation, and Creative Research Foundation of Science and Technology on Thermo Structural Composite Materials Laboratory (No. 6142911040114) for financial support;; the National Key R&D Program of China (No. 2017YFB0703200)
  • 语种:英文;
  • 页:JOAC201901010
  • 页数:9
  • CN:01
  • ISSN:10-1154/TQ
  • 分类号:114-122
摘要
For the first time, ZrC-ZrB_2-SiC ceramic nanocomposites were successfully prepared by a single-source-precursor route, with allylhydridopolycarbosilane(AHPCS),triethylamine borane(TEAB),and bis(cyclopentadienyl) zirconium dichloride(Cp_2 ZrCl_2) as starting materials. The polymer-to-ceramic transformation and thermal behavior of obtained single-source precursor were characterized by means of Fourier transform infrared spectroscopy(FT-IR) and thermal gravimetric analysis(TGA). The results show that the precursor possesses a high ceramic yield about 85% at 1000 ℃.The phase composition and microstructure of formed ZrC-ZrB_2-SiC ceramics were investigated by means of X-ray diffraction(XRD) and high resolution transmission electron microscopy(HRTEM).Meanwhile, the weight loss and chemical composition of the resultant ZrC-ZrB_2-SiC nanocomposites were investigated after annealing at high temperature up to 1800 ℃. High temperature behavior with respect to decomposition as well as crystallization shows a promising high temperature stability of the formed ZrC-ZrB_2-SiC nanocomposites.
        For the first time, ZrC-ZrB_2-SiC ceramic nanocomposites were successfully prepared by a single-source-precursor route, with allylhydridopolycarbosilane(AHPCS),triethylamine borane(TEAB),and bis(cyclopentadienyl) zirconium dichloride(Cp_2 ZrCl_2) as starting materials. The polymer-to-ceramic transformation and thermal behavior of obtained single-source precursor were characterized by means of Fourier transform infrared spectroscopy(FT-IR) and thermal gravimetric analysis(TGA). The results show that the precursor possesses a high ceramic yield about 85% at 1000 ℃.The phase composition and microstructure of formed ZrC-ZrB_2-SiC ceramics were investigated by means of X-ray diffraction(XRD) and high resolution transmission electron microscopy(HRTEM).Meanwhile, the weight loss and chemical composition of the resultant ZrC-ZrB_2-SiC nanocomposites were investigated after annealing at high temperature up to 1800 ℃. High temperature behavior with respect to decomposition as well as crystallization shows a promising high temperature stability of the formed ZrC-ZrB_2-SiC nanocomposites.
引文
[1]Li J,Fu ZY,Wang WM,et al.Preparation of Zr C by self-propagating high-temperature synthesis.Ceram Int2010,36:1681-1686.
    [2]Pi H,Fan S,Wang Y.C/Si C-Zr B2-Zr C composites fabricated by reactive melt infiltration with Zr Si2 alloy.Ceram Int 2012,38:6541-6548.
    [3]Li Q,Dong S,Wang Z,et al.Fabrication and properties of3-D Cf/Si C-Zr C composites,using Zr C precursor and polycarbosilane.J Am Ceram Soc 2012,95:1216-1219.
    [4]Fahrenholtz WG,Hilmas GE,Talmy IG,et al.Refractory diborides of zirconium and hafnium.J Am Ceram Soc 2007,90:1347-1364.
    [5]Miller-Oana M,Neff P,Valdez M,et al.Oxidation behavior of aerospace materials in high enthalpy flows using an oxyacetylene torch facility.J Am Ceram Soc 2015,98:1300-1307.
    [6]Jiang DL.Fine Ceramics Materials.Beijing:Substance Press,2000.(in Chinese)
    [7]Lucas R,Davis CE,Clegg WJ,et al.Elaboration of Zr C-Si C composites by spark plasma sintering using polymer-derived ceramics.Ceram Int 2014,40:15703-15709.
    [8]Wang H,Chen X,Gao B,et al.Synthesis and characterization of a novel precursor-derived Zr C/Zr B2ultra-high-temperature ceramic composite.Appl Organomet Chem 2013,27:79-84.
    [9]Zhou H,Gao L,Wang Z,et al.Zr B2-Si C oxidation protective coating on C/C composites prepared by vapor silicon infiltration process.J Am Ceram Soc 2010,93:915-919.
    [10]Shi X-H,Huo J-H,Zhu J-L,et al.Ablation resistance of Si C-Zr C coating prepared by a simple two-step method on carbon fiber reinforced composites.Corros Sci 2014,88:49-55.
    [11]Dong ZJ,Liu SX,Li XK,et al.Influence of infiltration temperature on the microstructure and oxidation behavior of Si C-Zr C ceramic coating on C/C composites prepared by reactive melt infiltration.Ceram Int 2015,41:797-811.
    [12]Hu C,Niu Y,Huang S,et al.In-situ fabrication of Zr B2-Si C/Si C gradient coating on C/C composites.JAlloys Compd 2015,646:916-923.
    [13]Li L,Li H,Li Y,et al.A Si C-Zr B2-Zr C coating toughened by electrophoretically-deposited Si C nanowires to protect C/C composites against thermal shock and oxidation.Appl Surf Sci 2015,349:465-471.
    [14]Gleiter H.Nanostructured materials:State of the art and perspectives.Nanostruct Mater 1995,6:3-14.
    [15]Sawaguchi A,Toda K,Niihara K.Mechanical and electrical properties of silicon nitride-silicon carbide nanocomposite material.J Am Ceram Soc 1991,74:1142-1144.
    [16]Ionescu E,Kleebe H-J,Riedel R.Silicon-containing polymer-derived ceramic nanocomposites(PDC-NCs):Preparative approaches and properties.Chem Soc Rev 2012,41:5032-5052.
    [17]Wang X-G,Zhang G-J,Xue J-X,et al.Reactive hot pressing of Zr C-Si C ceramics at low temperature.J Am Ceram Soc 2013,96:32-36.
    [18]Wu W-W,Zhang G-J,Kan Y-M,et al.Reactive hot pressing of Zr B2-Si C-Zr C ultra high-temperature ceramics at 1800℃.J Am Ceram Soc 2006,89:2967-2969.
    [19]Wang L,Jiang W,Chen L.Rapidly sintering nanosized Si Cparticle reinforced Ti C composites by the spark plasma sintering(SPS)technique.J Mater Sci 2004,39:4515-4519.
    [20]Sarin P,Driemeyer PE,Haggerty RP,et al.In situ studies of oxidation of Zr B2 and Zr B2-Si C composites at high temperatures.J Eur Ceram Soc 2010,30:2375-2386.
    [21]Yuan J,Hapis S,Breitzke H,et al.Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites(UHTC-NCs).Inorg Chem 2014,53:10443-10455.
    [22]Wen Q,Xu Y,Xu B,et al.Single-source-precursor synthesis of dense Si C/Hf Cx N1-x-based ultrahigh-temperature ceramic nanocomposites.Nanoscale 2014,6:13678-13689.
    [23]Cai T,Liu D,Qiu WF,et al.Polymer precursor-derived Hf C-Si C ultrahigh-temperature ceramic nanocomposites.JAm Ceram Soc 2018,101:20-24.
    [24]Cheng J,Wang X,Wang H,et al.Preparation and high-temperature behaviour of Hf C-Si C nanocomposites derived from a non-oxygen single-source-precursor.J Am Ceram Soc 2017,100:5044-5055.
    [25]Cai T,Qiu W-F,Liu D,et al.Synthesis of soluble poly-yne polymers containing zirconium and silicon and corresponding conversion to nanosized Zr C/Si C composite ceramics.Dalton Trans 2013,42:4285-4290.
    [26]Lu Y,Chen F,An P,et al.Polymer precursor synthesis of Ta C-Si C ultrahigh temperature ceramic nanocomposites.RSC Adv 2016,6:88770-88776.
    [27]Li Y,Han W,Li H,et al.Synthesis of nano-crystalline Zr B2/Zr C/Si C ceramics by liquid precursors.Mater Lett2012,68:101-103.
    [28]Colombo P,Mera G,Riedel R,et al.Polymer-derived ceramics:40 years of research and innovation in advanced ceramics.J Am Ceram Soc 2010,93:1805-1837.
    [29]Yu Z,Huang M,Fang Y,et al.Modification of a liquid polycarbosilane with 9-BBN as a high-ceramic-yield precursor for Si C.React Funct Polym 2010,70:334-339.
    [30]Yu Z,Yang L,Min H,et al.Single-source-precursor synthesis of high temperature stable Si C/C/Fe nanocomposites from a processable hyperbranched polyferrocenylcarbosilane with high ceramic yield.J Mater Chem C 2014,2:1057-1067.
    [31]Yu Z,Yang L,Zhan J,et al.Preparation,cross-linking and ceramization of AHPCS/Cp2Zr Cl2 hybrid precursors for Si C/Zr C/C composites.J Eur Ceram Soc 2012,32:1291-1298.
    [32]Wen Q,Feng Y,Yu Z,et al.Microwave absorption of Si C/Hf Cx N1-x/C ceramic nanocomposites with Hf Cx N1-x-carbon core-shell particles.J Am Ceram Soc2016,99:2655-2663.
    [33]Li S,Zhang L,Huang M,et al.In situ synthesis and microstructure characterization of Ti C-Ti B2-Si C ultrafine composites from hybrid precursor.Mater Chem Phys 2012,133:946-953.
    [34]Yu Z,Pei Y,Lai S,et al.Single-source-precursor synthesis,microstructure and high temperature behavior of Ti C-Ti B2-Si C ceramic nanocomposites.Ceram Int 2017,43:5949-5956.
    [35]Amorós P,Beltrán D,Guillem C,et al.Synthesis and characterization of Si C/MC/C ceramics(M=Ti,Zr,Hf)starting from totally non-oxidic precursors.Chem Mater2002,14:1585-1590.
    [36]Drezdzon MA.The Manipulation of Air Sensitive Compounds.Chichester:John Wiley&Sons,1986.
    [37]Huang TH,Yu ZJ,He XM,et al.One-pot synthesis and characterization of a new,branched polycarbosilane bearing allyl groups.Chin Chem Lett 2007,18:754-757.
    [38]Bianchini D,Barsan MM,Butler IS,et al.Vibrational spectra of silsesquioxanes impregnated with the metallocene catalyst bis(η5-cyclopentadienyl)zirconium(IV)dichloride.Spectrochim Acta A 2007,68:956-969.
    [39]Cho M-S,Kim B-H,Kong J-I,et al.Synthesis,catalytic Si-Si dehydrocoupling,and thermolysis of polyvinylsilanes[CH2CH(Si H2X)]n(X=H,Ph).J Organomet Chem 2003,685:99-106.
    [40]Corey JY,Rooney SM.Reactions of symmetrical and unsymmetrical disilanes in the presence of Cp2MCl2/nBu Li(M=Ti,Zr,Hf).J Organomet Chem 1996,521:75-91.
    [41]Horá?ek M,Pinkas J,Gyepes R,et al.Reactivity of Si Me2H substituents in permethylated titanocene complexes:Dehydrocoupling and ethene hydrosilylation.Organometallics 2008,27:2635-2642.
    [42]Takahashi T,Hasegawa M,Suzuki N,et al.Zirconiumcatalyzed highly regioselective hydrosilation reaction of alkenes and X-ray structures of silyl(hydrido)zirconocene derivatives.J Am Chem Soc 1991,113:8564-8566.
    [43]Mocaer D,Pailler R,Naslain R,et al.Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors.Part I:The organic/inorganic transition.J Mater Sci 1993,28:2615-2631.
    [44]Zaheer M,Schmalz T,Motz G,et al.Polymer derived non-oxide ceramics modified with late transition metals.Chem Soc Rev 2012,41:5102-5116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700