Enhancement of luminescence intensity and spectroscopic analysis of Eu~(3+) activated and Li~+ charge-compensated Bi_2O_3 nanophosphors for solid-state lighting
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhancement of luminescence intensity and spectroscopic analysis of Eu~(3+) activated and Li~+ charge-compensated Bi_2O_3 nanophosphors for solid-state lighting
  • 作者:S.Ashwini ; S.C.Prashantha ; RamachANDra ; Naik ; H.Nagabhushana
  • 英文作者:S.Ashwini;S.C.Prashantha;RamachANDra Naik;H.Nagabhushana;Department of Physics, Channabasaveshwara Institute of Technology;Research Center, Department of Science, East West Institute of Technology;Department of Physics, New Horizon College of Engineering;CNR Rao Center for Advanced Materials, Tumkur University;
  • 英文关键词:Bi_2O_3:Eu~(3+):Li~+;;Sonochemical;;Photoluminescence;;CIE n CCT;;Photocatalysis;;Rare earths
  • 中文刊名:YXTB
  • 英文刊名:稀土学报(英文版)
  • 机构:Department of Physics, Channabasaveshwara Institute of Technology;Research Center, Department of Science, East West Institute of Technology;Department of Physics, New Horizon College of Engineering;CNR Rao Center for Advanced Materials, Tumkur University;
  • 出版日期:2019-03-27
  • 出版单位:Journal of Rare Earths
  • 年:2019
  • 期:v.37
  • 基金:supported by VGST,Govt.of Karnataka,India(VGST/K-FIST-L1/2016-17/GRD-360)
  • 语种:英文;
  • 页:YXTB201904004
  • 页数:9
  • CN:04
  • ISSN:11-2788/TF
  • 分类号:26-34
摘要
The present work reports the synthesis, characterization, photoluminescence and photocatalytic activity of Eu~(3+)(1 mol%-11 mol%) doped and Li~+(0.5 mol%-5 mol%) co-doped Bi_2 O_3 nanophosphors(NPs) by sonochemical method. The average particle size was estimated using powder X-ray diffraction(PXRD)and transmission electron microscopy(TEM) and is found to be in the range of 30-35 nm. The scanning electron microscopy(SEM) images were highly dependent on sonication time and concentration of epigallocatechin gallate(EGCG) bio-surfactant. The energy gap of doped and co-doped Bi_2 O_3 nanophosphors was estimated using Kubelka-Munk(K-M) function and is found to be in the range of2.9-3.08 eV. The effect of Li+ co-doping on luminescence of optimized Bi_2 O_3:Eu~(3+) was studied and is found about more than 3 fold enhancement of emission intensity. Judd-Ofelt parameters(Ω_2, Ω_4 and Ω_6).transition probabilities(A_T), quantum efficiency(η), luminescence lifetime(τ_(rad)), color chromaticity coordinates(CIE) and correlated color temperature(CCT) values were estimated from the emission spectra and are discussed in detail. The estimated CIE chromaticity co-ordinates are very close to the NTSC(National Television Standard Committee) standard value of red emission. The synthesized NPs show excellent photocatalytic activity of acid red-88 under UV-light irradiation, which can degrade 98.1% in60 min. The decreasing electron-hole pair recombination rate with quick electron transfer ability is predominantly ascribed to the balance between crystallite size, morphology, band gap, defects, surface area, etc. These results show a light for the use of sonochemical route of Bi_2 O_3:Eu~(3+):Li~+ in solid state display and photocatalytic applications.
        The present work reports the synthesis, characterization, photoluminescence and photocatalytic activity of Eu~(3+)(1 mol%-11 mol%) doped and Li~+(0.5 mol%-5 mol%) co-doped Bi_2 O_3 nanophosphors(NPs) by sonochemical method. The average particle size was estimated using powder X-ray diffraction(PXRD)and transmission electron microscopy(TEM) and is found to be in the range of 30-35 nm. The scanning electron microscopy(SEM) images were highly dependent on sonication time and concentration of epigallocatechin gallate(EGCG) bio-surfactant. The energy gap of doped and co-doped Bi_2 O_3 nanophosphors was estimated using Kubelka-Munk(K-M) function and is found to be in the range of2.9-3.08 eV. The effect of Li+ co-doping on luminescence of optimized Bi_2 O_3:Eu~(3+) was studied and is found about more than 3 fold enhancement of emission intensity. Judd-Ofelt parameters(Ω_2, Ω_4 and Ω_6).transition probabilities(A_T), quantum efficiency(η), luminescence lifetime(τ_(rad)), color chromaticity coordinates(CIE) and correlated color temperature(CCT) values were estimated from the emission spectra and are discussed in detail. The estimated CIE chromaticity co-ordinates are very close to the NTSC(National Television Standard Committee) standard value of red emission. The synthesized NPs show excellent photocatalytic activity of acid red-88 under UV-light irradiation, which can degrade 98.1% in60 min. The decreasing electron-hole pair recombination rate with quick electron transfer ability is predominantly ascribed to the balance between crystallite size, morphology, band gap, defects, surface area, etc. These results show a light for the use of sonochemical route of Bi_2 O_3:Eu~(3+):Li~+ in solid state display and photocatalytic applications.
引文
1. Rao CNR, Müller A, Cheetham AK. The chemistry of nanomaterials:synthesis,properties and applications. Weinheim:John Wiley&Sons; 2004.
    2. Fan YC, Chen X, Legut D, Zhang QF. Modeling and theoretical design of nextgeneration lithium metal batteries. Energy Storage Mater. 2019; 16:169.
    3. Zhang M, Song XH, Ou XW, Tang YF. Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Mater. 2019; 16:65.
    4. Wang SX, Shan R, Wang YZ, Lu LL, Yuan HR. Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production. Renew Energy. 2019;130:41.
    5. Zhao Q, Pan TT, Xiang G, Mei ZP, Jiang JP, Li G, et al. Highly efficient ratiometric extracellular oxygen sensors through physical incorporation of a conjugated polymer and PtTFPP in graft copolymers. Sens Actuators B. 2018;273:242.
    6. Lei J, Xu MC, Hu SJ. Theoretical design of magnetically ultrasensitive twodimensional ZnO biosensor for in vivo NO detection by electron paramagnetic resonance technique. Sens Actuators B. 2018;273:448.
    7. Anilkumar MR, Nagaswarupa HP, Nagabhushana H, Sharma SC, Vidya YS,Anantharaju KS, et al. Bio-inspired route for the synthesis of spherical shaped MgO:Fe3+nanoparticles:structural, photoluminescence and photocatalytic investigation. Spectrochim Acta Part A. 2015; 149:703.
    8. Leontie L, Caraman M, Alexe M, Harnagea C. Structural and optical characteristics of bismuth oxide thin films. SurfSci. 2002;507-510:480.
    9. Wang Y, Li YL. Metastableγ-Bi_2O_3 tetrahedra:phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch. J Colloid Interface Sci. 2015;454:238.
    10. López-Salinas FI, Martínez-Castanón GA, Martínez-Mendoza JR, Ruiz F. Synthesis and characterization of nanostructured powders of Bi_2O_3, BiOCl and Bi.Mater Lett. 2010;64:1555.
    11. Bhande SS, Mane RS, Ghule AV, Han SH. A bismuth oxide nanoplate-based carbon dioxide gas sensor. Scripta Mater. 2011;65:1081.
    12. Hashimoto T, Ohta H, Nasu H, Ishihara A. Preparation and photocatalytic activity of porous Bi_2O_3 polymorphisms. Int J Hydrogen Energy. 2016;41:7388.
    13. Han AJ, Sun JL, Chuah GK, Stephan. Enhanced p-cresol photodegradation over BiOBr/Bi_2O_3 in the presence of rhodamine B. RSC Adv. 2017;7:145.
    14. Saison T, Chemin N, Chaneac C, Durupthy O, Ruaux V, Mariey L, et al. Bi_2O_3,BiVO_4, and Bi_2WO_6:impact of surface properties on photocatalytic activity under visible light. J Phys Chem C. 2011;115:5657.
    15. Li K, Tang YP, Xu YL, Wang YL, Huo YN, Li HX, et al. A BiOCl film synthesis from Bi_2O_3 film and its UV and visible light photocatalytic activity. Appl Catal B.2013;140-141:179.
    16. Zhang XC, Guo TY, Wang XW, Wang YW, Fan CM, Zhang H. Facile compositioncontrolled preparation and photocatalytic application of BiOCl/Bi_2O_2CO_3nano sheets.Appl Catal B. 2014;150-151:486.
    17. Kim HW, Lee JW, Lee C. Temperature-controlled fabrication of crystalline betaBi_2O_3 nanowires through an MOCVD process. JKPS. 2007;50:1308.
    18. Gotic M, Popovic S, Music S. Influence of synthesis procedure on the morphology of bismuth oxide particles. Mater Lett. 2007;61:709.
    19. Kalandaragh YA, Bodagh FS, Yangjeh AH. Ultrasound-assisted preparation and characterization ofβ-Bi_2O_3 nanostructures:exploring the photocatalytic activity against rhodamine B. Superlattices Microst. 2015;81:151.
    20. Astuti Y, Fauziyah A, Nurhayati S, Wulansari AD, Andianingrum R, Hakim AR,et al. Synthesis ofα-Bismuth oxide using solution combustion method and its photocatalytic properties. Mater Sci Eng. 2016; 107:012006.
    21. Huang YJ, Zheng YQ, Zhu HL, Wang JJ. Hydrothermal synthesis of Bismuth(III)coordination polymer and its transformation to nanoα-Bi_2O_3 for photocatalytic degradation.J Solid State Chem. 2016;239:274.
    22. Dong W, Zhu C. Optical properties of surface-modified Bi_2O_3 nanoparticles.J Phys Chem Solids. 2003;64:265.
    23. Pan LK, Liu XJ, Sun Z, Sun CQ. Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. J Mater Chem A. 2013;1:8299.
    24. Wang CH, Shao CL, Wang LJ, Zhang L, Li XH, Liu YC. Electrospinning preparation, characterization and photocatalytic properties of Bi_2O_3 nanofibers.J Colloid Inter Sci. 2009;333:242.
    25. Gao JK, Ye KQ, He M, Xiong WW, Cao WF, Lee ZY, et al. Tuning metal-carboxylate coordination in crystalline metal-organic frameworks through surfactant media. J Solid State Chem. 2013;206:27.
    26. Huang YC, Fan WJ, Long B, Li HB, Zhao FY, Liu ZL, et al. Visible light Bi_2S_3/Bi_2O_3/Bi_2O_2CO_3 photocatalyst for effective degradation of organic pollution. Appl Catal B. 2016;185:68.
    27. Malathy P, Vignesh K, Rajarajan M, Suganthi A. Enhanced photocatalytic performance of transition metal doped Bi_2O_3 nanoparticles under visible light irradiation. Ceram Int. 2014;40:101.
    28. Dutta DP, Roy M, Tyagi AK. Dual function of rare earth doped nano Bi_2O_3:white light emision and photocatalytic properties. Dalton Trans. 2012;41:10238.
    29. Balakrishnaiah R, Yi SS, Jang K, Lee HS, Moon BK, Jeong JH. Enhanced luminescence properties of YBO_3:Eu~(3+)phosphors by Li-doping. Mater Res Bull.2011:46:621.
    30. Manohar T, Naik R, Prashantha SC, Nagabhushana H, Sharma SC,Nagaswarupa HP, et al. Photoluminescence and Judd-Ofelt analysis of Eu~(3+)doped LaAlO_3 nanophosphors for WLEDs. Dyes Pigments. 2015; 122:22.
    31. Suresh C, Nagabhushana H, Darshan GP, Basavaraj RB, Kavyashree D,Sharma SC, et al. Facile LaOF:Sm3+based labeling agent and their applications in residue chemistry of latent fingerprint and cheiloscopy under UV-visible light. Arab J Chem. 2018;11(4):460.
    32. Naik R, Prashantha SC, Nagabhushana H, Sharma SC, Nagaswarupa HP,Anantharaju KS, et al. Tunable white light emissive Mg_2SiO_4:Dy~(3+)nanophosphor:its Photoluminescence, Judd-Ofelt and photocatalytic studies. Dyes Pigments. 2016; 127:25.
    33. Klug P, Alexander LE. X-Ray Diffraction Procedure. New York:Wiley; 1954.
    34. Prashantha SC, Lakshminarasappa BN, Singh F. 100 MeV Si~(8+)ion induced luminescence and thermoluminescence of nanocrystalline Mg_2SiO_4:Eu~(3+).J Lumin. 2012;132:3093.
    35. Naik R, Prashantha SC, Nagabhushana H, Sharma SC, Nagabhushana BM,Nagaswarupa HP, et al. Low temperature synthesis and photoluminescence properties of red emitting Mg_2SiO_4:Eu~(3+)nanophosphor for near UV light emitting diodes. Sens Actuators B. 2014;195:140.
    36. Girish KM, Naik R, Prashantha SC, Nagabhushana H, Nagaswarupa HP,Raju KSA, et al. Zn_2TiO_4:Eu~(3+)nanophosphor:self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectr Chim Acta A.2015;138:857.
    37. Jisha PK, Naik R, Prashantha SC, Nagabhushana H, Sharma SC, Nagaswarupa HP,et al. Facile combustion synthesized orthorhombic GdAlO_3:Eu~(3+)nanophosphors:structural and photoluminescence properties for WLEDs. J Lumin.2015;163:47.
    38. Basavaraj RB, Nagabhushana H, Prasad BD, Sharma SC, Prashantha SC,Nagabhushana BM. A single host white light emitting Zn_2SiO_4:Re~(3+)(Eu, Dy,Sm)phosphor for LED applications. Optik. 2015;126:1745.
    39. Prashantha SC, Lakshminarasappa BN, Nagabhushana BM. Photoluminescence and thermoluminescence studies of Mg_2SiO_4:Eu~(3+)nano phosphor. J Alloys Compd. 2011;509:10185.
    40. Vidya YS, Anantharaju KS, Nagabhushana H, Sharma SC, Nagaswarupa HP,Prashantha SC, et al. Combustion synthesized tetragonal ZrO_2:Eu~(3+)nanophosphors:structural and photoluminescence studies. Spectrochim Chim Acta A. 2015;135:241.
    41. Vila M, Guerra CD, Lorenz K, Piqueras J, Alves E, Nappini S, et al. Structural and luminescence properties of Eu and Er implanted Bi_2O_3 nanowires for optoelectronic applications. J Mater Chern C. 2013:1:7920.
    42. Zhong S, Zou S, Peng XJ, Ma JT, Zhang FJ. Effects of calcination temperature on preparation and properties of europium-doped bismuth oxide as visible light catalyst.J Sol Gel Sci Technol. 2015:74:220.
    43. Raza W, Bahnemann D, Muneer M. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide. Catal Today. 2018;300:89.
    44. Blasse G, Grabmaier BC. Luminescent materials. Berlin:Springer-Verlag; 1994.
    45. Devaraja PB, Avadhani DN, Prashantha SC, Nagabhushana H, Sharma SC,Nagabhushana BM, et al. MgO:Eu3+red nanophosphor:low temperature synthesis and photoluminescence properties. Spectrochim Chim Acta A.2014:121:46.
    46. Naik R, Prashantha SC, Nagabhushana H. Effect of Lip codoping on structural and luminescent properties of Mg_2SiO_4:RE~(3+)(RE=Eu, Tb)nanophosphors for displays and eccrine latent fingerprint detection. Opt Mater. 2017;72:295.
    47. Prakashbabu D, Ramalingam HB, Krishna RH, Nagabhushana BM,Chandramohan R, Shivakumara C, et al. Charge compensation assisted enhancement of photoluminescence in combustion derived Li~+co-doped cubic ZrO_2:Eu~(3+)nanophosphors. Phys Chem Chem Phys. 2016;18:29447.
    48. Judd BR. Optical absorption intensities of rare-earth ions. Phys Rev. 1962;127:750.
    49. Ofelt GS. Intensities of crystal spectra of rare-earth ions. J Chem Phys. 1962;37:511.
    50. Malta OL, dos Santos MAC, Thompson LC, Ito NK. Intensity parameters of 4f-4f transitions in the Eu(dipivaloylmethanate)3 1,10-phenanthroline complex.J Lumin. 1996;69:77.
    51. Malta OL, Brito HF, Menezes JFS, de Silva Goncalves FR, Alves S, Farias FS, et al.Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data. J Lumin. 1997;75:255.
    52. Dean JA, ed. Lange's Handbook of Chemistry. 11th edn. vol. 10. New York:McGraw-Hill Book Company; 1973:258.
    53. Werts MHV, Jukes RTF, Verhoeven JW. The emission spectrum and the radiative lifetime of Eu~(3+)in luminescent lanthanide complexes. Phys Chem Chem Phys. 2002;4:1542.
    54. Carnall WT, Fields PR, Rajnak K. Electronic energy levels of the trivalent lanthanide Aquo ions.Ⅳ. Eu~(3+).J Chem Phys. 1968;49:4450.
    55. Carnall WT, Fields PR, Wybourne BG. Spectral intensities of the trivalent lanthanides and actinides in solution.I.Pr~(3+),Nd~(3+),Er~(3+),Tm~(3+),and Yb~(3+).J Chem Phys. 1965;42:3797.
    56. Duan ZC, Zhang JJ, Hu LL. Spectroscopic properties and Judd-Ofelt theory analysis of Dy3+doped oxyfluoride silicate glass.J Appl Phys. 2007;101:043110.
    57. Darshan GP, Premkumar HB, Nagabhushana H, Sharma SC, Prasad BD,Prashanth SC. Neodymium doped yttrium aluminate synthesis and optical properties-a blue light emitting nanophosphor and its use in advanced forensic analysis. Dyes Pigments. 2016;134:227.
    58. Ikeda K, Yamashina H, Ichihashi A. Colour rendering properties of light sources:new colour space for evaluation. Light Res Technol. 1996;28:97.
    59. Djurisic AB, Ng AMC, Chen XY. ZnO nanostructures for optoelectronics:material properties and device applications. Prog Quant Electron. 2010;34:191.
    60. Liu YX, Xu CF, Yang QB. White upconversion of rare-earth doped ZnO nanocrystals and its dependence on size of crystal particles and content of Yb~(3+)and Tm~(3+).J Appl Phys. 2009; 105:084701.
    61. Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science.2003;300:1269.
    62. Bhargava RN, Chhabra V, Som T, Ekimov A, Taskar N. Quantum confined atoms of doped ZnO nanocrystals. Phys Status Solidi B. 2002;229:897.
    63. Khatamian M, Khandar AA, Divband B, Haghighi M, Ebrahimiasl S. Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln(La~(3+), Nd~(3+)or Sm~(3+))doped ZnO nanoparticles. J Mol Catal A Chem.2012;365:120.
    64. Nadjia L, Abdelkader E, Naceur B, Ahmed B. CeO_2 nanoscale particles:synthesis,characterization and photocatalytic activity under UVA light irradiation. J Rare Earths. 2018;36(6):575.
    65. Wang RF, Wang FM, AN SL, Song JL, Zhang Y. Y/Eu co-doped TiO_2:synthesis and photocatalytic activities under UV-light. J Rare Earths. 2015:33(2):154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700