DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain
  • 作者:Yuka ; Kobayashi ; Sofya ; P ; Kulikova ; Junko ; Shibato ; Randeep ; Rakwal ; Hiroyuki ; Satoh ; Didier ; Pinault ; Yoshinori ; Masuo
  • 英文作者:Yuka Kobayashi;Sofya P Kulikova;Junko Shibato;Randeep Rakwal;Hiroyuki Satoh;Didier Pinault;Yoshinori Masuo;Department of Biomolecular Science,Faculty of Science,Toho University;Health Technology Research Center,National Institute of Advanced Industrial Science and Technology;INSERM U1114,Neuro-psychologie Cognitive et Physiopathologie de la Schizophrénie,FMTS (Fédération de Médecine Translationnelle de Strasbourg),Faculté de Médecine,Université de Strasbourg;Department of Anatomy,School of Medicine,Showa University;Laboratory of Exercise Biochemistry and Neuroendrocrinology,Institute of Health and Sport Sciences,University of Tsukuba;Global Research Center for Innovative Life Science,Peptide Drug Innovation,School of Pharmacy and Pharmaceutical Sciences,Hoshi University;Organization for Educational Initiatives,University of Tsukuba;Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies,University of Tsukuba;Laboratory of Neuroscience,Department of Biology,Faculty of Science,Toho University;
  • 英文关键词:Dizocilpine;;Dye-swap;;Gene expression;;Microarray;;MK801;;N-Methyl-D-aspartate receptors
  • 中文刊名:SJSW
  • 英文刊名:世界生物化学杂志(电子版)(英文版)
  • 机构:Department of Biomolecular Science,Faculty of Science,Toho University;Health Technology Research Center,National Institute of Advanced Industrial Science and Technology;INSERM U1114,Neuro-psychologie Cognitive et Physiopathologie de la Schizophrénie,FMTS (Fédération de Médecine Translationnelle de Strasbourg),Faculté de Médecine,Université de Strasbourg;Department of Anatomy,School of Medicine,Showa University;Laboratory of Exercise Biochemistry and Neuroendrocrinology,Institute of Health and Sport Sciences,University of Tsukuba;Global Research Center for Innovative Life Science,Peptide Drug Innovation,School of Pharmacy and Pharmaceutical Sciences,Hoshi University;Organization for Educational Initiatives,University of Tsukuba;Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies,University of Tsukuba;Laboratory of Neuroscience,Department of Biology,Faculty of Science,Toho University;
  • 出版日期:2015-11-26
  • 出版单位:World Journal of Biological Chemistry
  • 年:2015
  • 期:v.6
  • 基金:supported by The French Institute of health and Medical Research (Inserm),Université de Strasbourg and Neurex
  • 语种:英文;
  • 页:SJSW201504013
  • 页数:20
  • CN:04
  • 分类号:126-145
摘要
AIM:To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions. METHODS:Rats were treated with an intraperitoneal injection of MK-801 [0.08(low-dose) and 0.16(highdose) mg/kg] or NaC l(vehicle control). In a first series of experiment,the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments,the whole brain of each animal was rapidly removed at 40 min post-injection,and different regions were separated:amygdala,cerebral cortex,hippocampus,hypothalamus,midbrain and ventral striatum on ice followed by DNA microarray(4 × 44 K whole rat genome chip) analysis.RESULTS:Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency(30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number(up- and down- regulations) of gene expressions in the cerebral cortex(378),midbrain(376),hippocampus(375),ventral striatum(353),amygdala(301),and hypothalamus(201) under low-dose(0.08 mg/kg) of MK-801. Under high-dose(0.16 mg/kg),ventral striatum(811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region.CONCLUSION:Acute MK-801 treatment increases synchrony of baseline gamma oscillations,and causes very early changes in gene expressions in six individual rat brain regions,a first report.
        AIM:To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions. METHODS:Rats were treated with an intraperitoneal injection of MK-801 [0.08(low-dose) and 0.16(highdose) mg/kg] or NaC l(vehicle control). In a first series of experiment,the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments,the whole brain of each animal was rapidly removed at 40 min post-injection,and different regions were separated:amygdala,cerebral cortex,hippocampus,hypothalamus,midbrain and ventral striatum on ice followed by DNA microarray(4 × 44 K whole rat genome chip) analysis.RESULTS:Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency(30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number(up- and down- regulations) of gene expressions in the cerebral cortex(378),midbrain(376),hippocampus(375),ventral striatum(353),amygdala(301),and hypothalamus(201) under low-dose(0.08 mg/kg) of MK-801. Under high-dose(0.16 mg/kg),ventral striatum(811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region.CONCLUSION:Acute MK-801 treatment increases synchrony of baseline gamma oscillations,and causes very early changes in gene expressions in six individual rat brain regions,a first report.
引文
1 Mayer ML,Westbrook GL.The physiology of excitatory amino acids in the vertebrate central nervous system.Prog Neurobiol 1987;28:197-276[PMID:2883706 DOI:10.1016/0301-0082(87)90011-6]
    2 Liu L,Wong TP,Pozza MF,Lingenhoehl K,Wang Y,Sheng M,Auberson YP,Wang YT.Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity.Science 2004;304:1021-1024[PMID:15143284 DOI:10.1126/science.1096615]
    3 Hallett PJ,Standaert DG.Rationale for and use of NMDA receptorantagonists in Parkinson’s disease.Pharmacol Ther 2004;102:155-174[PMID:15163596 DOI:10.1016/j.pharmthera.2004.04.001]
    4 Javitt DC.Glutamate and schizophrenia:phencyclidine,N-methylD-aspartate receptors,and dopamine-glutamate interactions.Int Rev Neurobiol 2007;78:69-108[PMID:17349858 DOI:10.1016/S0074-7742(06)78003-5]
    5 Lau CG,Zukin RS.NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders.Nat Rev Neurosci 2007;8:413-426[PMID:17514195 DOI:10.1038/nrn2153]
    6 Lai TW,Shyu WC,Wang YT.Stroke intervention pathways:NMDA receptors and beyond.Trends Mol Med 2011;17:266-275[PMID:21310659 DOI:10.1016/j.molmed.2010.12.008]
    7 Lehohla M,Kellaway L,Russell VA.NMDA receptor function in the prefrontal cortex of a rat model for attention-deficit hyperactivity disorder.Metab Brain Dis 2004;19:35-42[PMID:15214504 DOI:10 .1023/B:MEBR.0000027415.75432.ad]
    8 Javitt DC,Zukin SR.Recent advances in the phencyclidine model of schizophrenia.Am J Psychiatry 1991;148:1301-1308[PMID:1654746 DOI:10.1176/ajp.148.10.1301]
    9 Krystal JH,Karper LP,Seibyl JP,Freeman GK,Delaney R,Bremner JD,Heninger GR,Bowers MB,Charney DS.Subanesthetic effects of the noncompetitive NMDA antagonist,ketamine,in humans.Psychotomimetic,perceptual,cognitive,and neuroendocrine responses.Arch Gen Psychiatry 1994;51:199-214[PMID:8122957DOI:10.1001/archpsyc.1994.03950030035004]
    10 Dickenson AH.A cure for wind up:NMDA receptor antagonists as potential analgesics.Trends Pharmacol Sci 1990;11:307-309[PMID:2168102 DOI:10.1016/0165-6147(90)90228-Z]
    11 Xu XJ,Zhang X,H?kfelt T,Wiesenfeld-Hallin Z.Plasticity in spinal nociception after peripheral nerve section:reduced effectiveness of the NMDA receptor antagonist MK-801 in blocking wind-up and central sensitization of the flexor reflex.Brain Res 1995;670:342-346[PMID:7743203 DOI:10.1016/0006-8993(94)01360-T]
    12 Tamminga CA.Schizophrenia and glutamatergic transmission.Crit Rev Neurobiol 1998;12:21-36[PMID:9444480 DOI:10.1615/CritR evN eurobiol.v12.i1-2.20]
    13 Jentsch JD,Roth RH.The neuropsychopharmacology of phencyclidine:from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia.Neuropsychopharmacology 1999;20:201-225[PMID:10063482 DOI:10.1016/S0893-133X(98)00060-8]
    14 Driesen NR,McC arthy G,Bhagwagar Z,Bloch M,Calhoun V,D’Souza DC,Gueorguieva R,He G,Ramachandran R,Suckow RF,Anticevic A,Morgan PT,Krystal JH.Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans.Mol Psychiatry2013;18:1199-1204[PMID:23337947 DOI:10.1038/mp.2012.194]
    15 Anticevic A,Corlett PR,Cole MW,Savic A,Gancsos M,Tang Y,Repovs G,Murray JD,Driesen NR,Morgan PT,Xu K,Wang F,Krystal JH.N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity better model early than chronic schizophrenia.Biol Psychiatry 2015;77:569-580[PMID:25281999DOI:10.1016/j.biopsych.2014.07.022]
    16 Pinault D.N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex.Biol Psychiatry 2008;63:730-735[PMID:18022604DOI:10.1016/j.biopsych.2007.10.006]
    17 Hakami T,Jones NC,Tolmacheva EA,Gaudias J,Chaumont J,Salzberg M,O’Brien TJ,Pinault D.NMDA receptor hypofunction leads to generalized and persistent aberrant gamma oscillations independent of hyperlocomotion and the state of consciousness.PLoS One 2009;4:e6755[PMID:19707548 DOI:10.1371/journal.pone.0006755]
    18 Snyder SH.Phencyclidine.Nature 1980;285:355-356[PMID:7189825 DOI:10.1038/285355a0]
    19 Luby ED,Cohen BD,Rosenbaum G,Gottlieb JS,Kelley R.Study of a new schizophrenomimetic drug;sernyl.AMA Arch Neurol Psychiatry 1959;81:363-369[PMID:13626287 DOI:10.1001/archneurpsyc.1959.02340150095011]
    20 Emamian ES,Karayiorgou M,Gogos JA.Decreased phosp-horylation of NMDA receptor type 1 at serine 897 in brains of patients with Schizophrenia.J Neurosci 2004;24:1561-1564[PMID:14973229 DOI:10.1523/JNEUROSCI.4650-03.2004]
    21 Itokawa M,Yamada K,Yoshitsugu K,Toyota T,Suga T,Ohba H,Watanabe A,Hattori E,Shimizu H,Kumakura T,Ebihara M,Meerabux JM,Toru M,Yoshikawa T.A microsatellite repeat in the promoter of the N-methyl-D-aspartate receptor 2A subunit(GRIN2A)gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia.Pharmacogenetics 2003;13:271-278[PMID:12724619 DOI:10.1097/01.fpc.0000054082.64000.63]
    22 Mouri A,Noda Y,Mizoguchi H,Nabeshima T.[Dysfunction of glutamatergic systems and potential animal models of schizophrenia].Nihon Yakurigaku Zasshi 2006;127:4-8[PMID:16508216 DOI:10.1254/fpj.127.4]
    23 L?scher W,H?nack D.Anticonvulsant and behavioral effects of two novel competitive N-methyl-D-aspartic acid receptor antagonists,CGP 37849 and CGP 39551,in the kindling model of epilepsy.Comparison with MK-801 and carbamazepine.J Pharmacol Exp Ther 1991;256:432-440[PMID:1671593]
    24 Miller FE,Heffner TG,Kotake C,Seiden LS.Magnitude and duration of hyperactivity following neonatal 6-hydroxydopamine is related to the extent of brain dopamine depletion.Brain Res 1981;229:123-132[PMID:6796194 DOI:10.1016/0006-8993(81)90750-2]
    25 Masuo Y,Ishido M,Morita M,Oka S,Niki E.Motor activity and gene expression in rats with neonatal 6-hydroxydopamine lesions.J Neurochem 2004;91:9-19[PMID:15379882 DOI:10.1111/j.1471-4159.2004.02615.x]
    26 Wong EH,Kemp JA,Priestley T,Knight AR,Woodruff GN,Iversen LL.The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist.Proc Natl Acad Sci USA 1986;83:7104-7108[PMID:3529096]
    27 Woodruff GN,Foster AC,Gill R,Kemp JA,Wong EH,Iversen LL.The interaction between MK-801 and receptors for N-methyl-Daspartate:functional consequences.Neuropharmacology 1987;26:903-909[PMID:2821432]
    28 de Olmos S,Bender C,de Olmos JS,Lorenzo A.Neurodegeneration and prolonged immediate early gene expression throughout cortical areas of the rat brain following acute administration of dizocilpine.Neuroscience 2009;164:1347-1359[PMID:19772897 DOI:10 .1016/j.neuroscience.2009.09.022]
    29 Ahlander M,Misane I,Sch?tt PA,Ogren SO.A behavioral analysis of the spatial learning deficit induced by the NMDA receptor antagonist MK-801(dizocilpine)in the rat.Neuropsychopharmacology 1999;21:414-426[PMID:10457539 DOI:10.1016/S0893-133X(98)00116-X]
    30 Manahan-Vaughan D,von Haebler D,Winter C,Juckel G,Heinemann U.A single application of MK801 causes symptoms of acute psychosis,deficits in spatial memory,and impairment of synaptic plasticity in rats.Hippocampus 2008;18:125-134[PMID:17924525 DOI:10.1002/hipo.20367]
    31 Koek W,Woods JH,Winger GD.MK-801,a proposed noncompetitive antagonist of excitatory amino acid neurotransmission,produces phencyclidine-like behavioral effects in pigeons,rats and rhesus monkeys.J Pharmacol Exp Ther 1988;245:969-974[PMID:2838610]
    32 Tiedtke PI,Bischoff C,Schmidt WJ.MK-801-induced stereotypy and its antagonism by neuroleptic drugs.J Neural Transm Gen Sect1990;81:173-182[PMID:1975747 DOI:10.1007/BF01245040]
    33 AndinéP,Widermark N,Axelsson R,Nyberg G,Olofsson U,M?rtensson E,Sandberg M.Characterization of MK-801-induced behavior as a putative rat model of psychosis.J Pharmacol Exp Ther1999;290:1393-1408[PMID:10454519]
    34 MarvanováM,Lakso M,Wong G.Identification of genes regulated by memantine and MK-801 in adult rat brain by cD NA microarray analysis.Neuropsychopharmacology 2004;29:1070-1079[PMID:14970830 DOI:10.1038/sj.npp.1300398]
    35 Glowinski J,Iversen LL.Regional studies of catecholamines in the rat brain.I.The disposition of[3H]norepinephrine,[3H]dopamine and[3H]dopa in various regions of the brain.J Neurochem 1966;13:655-669[PMID:5950056]
    36 Hirano M,Rakwal R,Shibato J,Agrawal GK,Jwa NS,Iwahashi H,Masuo Y.New protein extraction/solubilization protocol for gelbased proteomics of rat(female)whole brain and brain regions.Mol Cells 2006;22:119-125[PMID:16951559]
    37 Hirano M,Rakwal R,Kouyama N,Katayama Y,Hayashi M,Shibato J,Ogawa Y,Yoshida Y,Iwahashi H,Masuo Y.Gel-based proteomics of unilateral irradiated striatum after gamma knife surgery.J Proteome Res 2007;6:2656-2668[PMID:17564426DOI:10.1021/pr070093k]
    38 Masuo Y,Hirano M,Shibato J,Nam HW,Fournier I,Mériaux C,Wisztorski M,Salzet M,Soya H,Agrawal GK,Ogawa T,Shioda S,Rakwal R.Brain proteomics:Sample preparation techniques for the analysis of rat brain samples using mass spectrometry.In:Ivanov AR,Lazarev AV,editors.Sample Preparation in Biological Mass Spectrometry.Dordrecht Heidelberg London,New York:Springer,2011:171-195[DOI:10.1007/978-94-007-0828-0_11]
    39 Masuo Y,Shibato J,Rakwal R.ADHD animal model characterization:transcriptomics and proteomics analyses.Methods Mol Biol 2012;829:505-530[PMID:22231835 DOI:10.1007/978-1-61779 -458-2_32]
    40 Suzuki T,Higgins PJ,Crawford DR.Control selection for RNA quantitation.Biotechniques 2000;29:332-337[PMID:10948434]
    41 Hori M,Nakamachi T,Rakwal R,Shibato J,Nakamura K,Wada Y,Tsuchikawa D,Yoshikawa A,Tamaki K,Shioda S.Unraveling the ischemic brain transcriptome in a permanent middle cerebral artery occlusion mouse model by DNA microarray analysis.Dis Model Mech 2012;5:270-283[PMID:22015461 DOI:10.1242/dmm.008276]
    42 Martin-Magniette ML,Aubert J,Cabannes E,Daudin JJ.Evaluation of the gene-specific dye bias in c DNA microarray experiments.Bioinformatics 2005;21:1995-2000[PMID:15691855 DOI:10 .1093/bioinformatics/bti302]
    43 Hirano M,Rakwal R,Shibato J,Sawa H,Nagashima K,Ogawa Y,Yoshida Y,Iwahashi H,Niki E,Masuo Y.Proteomics-and transcriptomics-based screening of differentially expressed proteins and genes in brain of Wig rat:a model for attention deficit hyperactivity disorder(ADHD)research.J Proteome Res 2008;7:2471-2489[PMID:18457438 DOI:10.1021/pr800025t]
    44 Ogawa T,Rakwal R,Shibato J,Sawa C,Saito T,Murayama A,Kuwagata M,Kageyama H,Yagi M,Satoh K,Shioda S.Seeking gene candidates responsible for developmental origins of health and disease.Congenit Anom(Kyoto)2011;51:110-125[PMID:21848995 DOI:10.1111/j.1741-4520.2011.00315.x]
    45 Lee MC,Rakwal R,Shibato J,Inoue K,Chang H,Soya H.DNA microarray-based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity.Physiol Rep 2014;2:pii:e12206[PMID:25413326 DOI:10.14814/phy2.12206]
    46 Nowak K,Meyza K,Nikolaev E,Hunt MJ,Kasicki S.Local blockade of NMDA receptors in the rat prefrontal cortex increases c-Fos expression in multiple subcortical regions.Acta Neurobiol Exp(Wars)2012;72:207-218[PMID:23093008]
    47 Grzeszkiewicz TM,Lindner V,Chen N,Lam SC,Lau LF.The angiogenic factor cysteine-rich 61(CYR61,CCN1)supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1)and cell surface heparan sulfate proteoglycans.Endocrinology 2002;143:1441-1450[PMID:11897702 DOI:10.1210/endo.143.4.8731]
    48 Ito T,Hiraoka S,Kuroda Y,Ishii S,Umino A,Kashiwa A,Yamamoto N,Kurumaji A,Nishikawa T.Effects of schizophrenomimetics on the expression of the CCN1(CYR 61)gene encoding a matricellular protein in the infant and adult neocortex of the mouse and rat.Int J Neuropsychopharmacol 2007;10:717-725[PMID:17608974 DOI:10 .1017/S1461145707007882]
    49 Albrecht C,von Der Kammer H,Mayhaus M,Klaudiny J,Schweizer M,Nitsch RM.Muscarinic acetylcholine receptors induce the expression of the immediate early growth regulatory gene CYR61.J Biol Chem 2000;275:28929-28936[PMID:10852911DOI:10.1074/jbc.M003053200]
    50 Regard JB,Scheek S,Borbiev T,Lanahan AA,Schneider A,Demetriades AM,Hiemisch H,Barnes CA,Verin AD,Worley PF.Verge:a novel vascular early response gene.J Neurosci 2004;24:4092-4103[PMID:15102925 DOI:10.1523/JNEUROSCI.4252-03.2004]
    51 Drexhage RC,Padmos RC,de Wit H,Versnel MA,Hooijkaas H,van der Lely AJ,van Beveren N,deR ijk RH,Cohen D.Patients with schizophrenia show raised serum levels of the pro-inflammatory chemokine CCL2:association with the metabolic syndrome in patients?Schizophr Res 2008;102:352-355[PMID:18486454 DOI:10 .1016/j.schres.2008.03.018]
    52 Guyon A,Skrzydelski D,De Giry I,Rovère C,Conductier G,Trocello JM,DaugéV,Kitabgi P,Rostène W,Nahon JL,Mélik Parsadaniantz S.Long term exposure to the chemokine CCL2activates the nigrostriatal dopamine system:a novel mechanism for the control of dopamine release.Neuroscience 2009;162:1072-1080[PMID:19477239 DOI:10.1016/j.neuroscience.2009.05.048]
    53 Zhu S,Tai C,Mac Vicar BA,Jia W,Cynader MS.Glutamatergic stimulation triggers rapid Krüpple-like factor 4 expression in neurons and the overexpression of KLF4 sensitizes neurons to NMDAinduced caspase-3 activity.Brain Res 2009;1250:49-62[PMID:19041854 DOI:10.1016/j.brainres.2008.11.013]
    54 Adams BW,Moghaddam B.Effect of clozapine,haloperidol,or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex.Biol Psychiatry 2001;50:750-757[PMID:11720693 DOI:10.1016/S0006-3223(01)01195-7]
    55 Anand A,Charney DS,Oren DA,Berman RM,Hu XS,Cappiello A,Krystal JH.Attenuation of the neuropsychiatric effects of ketamine with lamotrigine:support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists.Arch Gen Psychiatry 2000;57:270-276[PMID:10711913 DOI:10.1001/archpsyc.57.3.270]
    56 Jones RS,Bühl EH.Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation.Neurosci Lett 1993;149:35-39[PMID:8469376 DOI:10 .1016/0304-3940(93)90341-H]
    57 Grunze HC,Rainnie DG,Hasselmo ME,Barkai E,Hearn EF,McC arley RW,Greene RW.NMDA-dependent modulation of CA1local circuit inhibition.J Neurosci 1996;16:2034-2043[PMID:8604048]
    58 Sasaki M,Seo-Kiryu S,Kato R,Kita S,Kiyama H.A disintegrin and metalloprotease with thrombospondin type1 motifs(ADAMTS-1)and IL-1 receptor type 1 m RNAs are simultaneously induced in nerve injured motor neurons.Brain Res Mol Brain Res 2001;89:158-163[PMID:11311987 DOI:10.1016/S0169-328X(01)00046-8]
    59 Cross AK,Haddock G,Stock CJ,Allan S,Surr J,Bunning RA,Buttle DJ,Woodroofe MN.ADAMTS-1 and-4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes.Brain Res 2006;1088:19-30[PMID:16630594 DOI:10.1016/j.brainres.2006.02.136]
    60 Miguel RF,Pollak A,Lubec G.Metalloproteinase ADAMTS-1 but not ADAMTS-5 is manifold overexpressed in neurodegenerative disorders as Down syndrome,Alzheimer’s and Pick’s disease.Brain Res Mol Brain Res 2005;133:1-5[PMID:15661359 DOI:10.1016/j.molbrainres.2004.09.008]
    61 Kurumaji A,Ito T,Ishii S,Nishikawa T.Effects of FG7142 and immobilization stress on the gene expression in the neocortex of mice.Neurosci Res 2008;62:155-159[PMID:18771696 DOI:10 .1016/j.neures.2008.08.001]
    62 Putnam DK,Sun J,Zhao Z.Exploring schizophrenia drug-gene interactions through molecular network and pathway modeling.AMIA Annu Symp Proc 2011;2011:1127-1133[PMID:22195173]
    63 Zemo DA,Mc Cabe JT.Salt-loading increases vasopressin and vasopressin 1b receptor m RNA in the hypothalamus and choroid plexus.Neuropeptides 2001;35:181-188[PMID:11884209 DOI:10 .1054/npep.2001.0864]
    64 Mori T,Dickhout JG,Cowley AW.Vasopressin increases intracellular NO concentration via Ca(2+)signaling in inner medullary collecting duct.Hypertension 2002;39:465-469[PMID:11882591 DOI:10.1161/hy02t2.102908]
    65 Matsuoka T,Tsunoda M,Sumiyoshi T,Takasaki I,Tabuchi Y,SeoT,Tanaka K,Uehara T,Itoh H,Suzuki M,Kurachi M.Effect of MK-801 on gene expressions in the amygdala of rats.Synapse 2008;62:1-7[PMID:17948890 DOI:10.1002/syn.20455]
    66 Kishimoto T,Hirai M,Ohsawa H,Terada M,Matsuoka I,Ikawa G.Manners of arginine vasopressin secretion in schizophrenic patients--with reference to the mechanism of water intoxication.Jpn J Psychiatry Neurol 1989;43:161-169[PMID:2796026 DOI:10 .1111/j.1440-1819.1989.tb02565.x]
    67 Egashira N,Tanoue A,Tsujimoto G,Mishima K,Takano Y,Iwasaki K,Fujiwara M.[Vasopressin receptor knockout mice as an animal model of psychiatric disorders].Nihon Shinkei Seishin Yakurigaku Zasshi 2006;26:101-105[PMID:16722468]
    68 Simmons DG,Kennedy TG.Uterine sensitization-associated gene-1:a novel gene induced within the rat endometrium at the time of uterine receptivity/sensitization for the decidual cell reaction.Biol Reprod 2002;67:1638-1645[PMID:12390898 DOI:10.1095/biolreprod.102.006858]
    69 Park JW,Park ES,Choi EN,Park HY,Jung SC.Altered brain gene expression profiles associated with the pathogenesis of phenylketonuria in a mouse model.Clin Chim Acta 2009;401:90-99[PMID:19073163 DOI:10.1016/j.cca.2008.11.019]
    70 Nakamura N,Suzuki Y,Sakuta H,Ookata K,Kawahara K,Hirose S.Inwardly rectifying K+channel Kir7.1 is highly expressed in thyroid follicular cells,intestinal epithelial cells and choroid plexus epithelial cells:implication for a functional coupling with Na+,K+-ATPase.Biochem J 1999;342(Pt 2):329-336[PMID:10455019]
    71 Wan C,Yang Y,Li H,La Y,Zhu H,Jiang L,Chen Y,Feng G,He L.Dysregulation of retinoid transporters expression in body fluids of schizophrenia patients.J Proteome Res 2006;5:3213-3216[PMID:17081074 DOI:10.1021/pr060176l]
    72 Kohda K,Jinde S,Iwamoto K,Bundo M,Kato N,Kato T.Maternal separation stress drastically decreases expression of transthyretin in the brains of adult rat offspring.Int J Neuropsychopharmacol 2006;9:201-208[PMID:16079023 DOI:10.1017/S1461145705005857]
    73 Tsai KJ,Yang CH,Lee PC,Wang WT,Chiu MJ,Shen CK.Asymmetric expression patterns of brain transthyretin in normal mice and a transgenic mouse model of Alzheimer’s disease.Neuroscience 2009;159:638-646[PMID:19167467 DOI:10.1016/j.neuroscience.2008.12.045]
    74 Chaffer CL,Morris MJ.The feeding response to melaninconcentrating hormone is attenuated by antagonism of the NPY Y(1)-receptor in the rat.Endocrinology 2002;143:191-197[PMID:11751609 DOI:10.1210/endo.143.1.8569]
    75 Varas M,Pérez M,Ramírez O,de Barioglio SR.Melanin concentrating hormone increase hippocampal synaptic transmission in the rat.Peptides 2002;23:151-155[PMID:11814630 DOI:10 .1016/S0196-9781(01)00591-5]
    76 Saito Y,Tetsuka M,Yue L,Kawamura Y,Maruyama K.Functional role of N-linked glycosylation on the rat melanin-concentrating hormone receptor 1.FEBS Lett 2003;533:29-34[PMID:12505154DOI:10.1016/S0014-5793(02)03744-4]
    77 Müller DJ,Kennedy JL.Genetics of antipsychotic treatment emergent weight gain in schizophrenia.Pharmacogenomics 2006;7:863-887[PMID:16981847 DOI:10.2217/14622416.7.6.863]
    78 Chagnon YC,Bureau A,Gendron D,Bouchard RH,Mérette C,Roy MA,Maziade M.Possible association of the pro-melaninconcentrating hormone gene with a greater body mass index as a side effect of the antipsychotic olanzapine.Am J Med Genet B Neuropsychiatr Genet 2007;144B:1063-1069[PMID:17541984DOI:10.1002/ajmg.b.30554]
    79 Fatemi SH,Reutiman TJ,Folsom TD,Sidwell RW.The role of cerebellar genes in pathology of autism and schizophrenia.Cerebellum 2008;7:279-294[PMID:18418686 DOI:10.1007/s12311-008-0017-0]
    80 Giros B,el Mestikawy S,Bertrand L,Caron MG.Cloning and functional characterization of a cocaine-sensitive dopamine transporter.FEBS Lett 1991;295:149-154[PMID:1765147 DOI:10 .1016/0014-5793(91)81406-X]
    81 Kilty JE,Lorang D,Amara SG.Cloning and expression of a cocaine-sensitive rat dopamine transporter.Science 1991;254:578-579[PMID:1948035 DOI:10.1126/science.1948035]
    82 Shimada S,Kitayama S,Lin CL,Patel A,Nanthakumar E,Gregor P,Kuhar M,Uhl G.Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA.Science 1991;254:576-578[PMID:1948034 DOI:10.1126/science.1948034]
    83 Sáiz PA,García-Portilla MP,Arango C,Morales B,Arias B,Corcoran P,Fernández JM,Alvarez V,Coto E,Bascarán MT,Bouso?o M,Fa?anas L,Bobes J.Genetic polymorphisms in the dopamine-2 receptor(DRD2),dopamine-3 receptor(DRD3),and dopamine transporter(SLC6A3)genes in schizophrenia:Data from an association study.Prog Neuropsychopharmacol Biol Psychiatry 2010;34:26-31[PMID:19766158 DOI:10.1016/j.pnpbp.2009.09.008]
    84 Talkowski ME,Kirov G,Bamne M,Georgieva L,Torres G,Mansour H,Chowdari KV,Milanova V,Wood J,Mc Clain L,Prasad K,Shirts B,Zhang J,O’Donovan MC,Owen MJ,Devlin B,Nimgaonkar VL.A network of dopaminergic gene variations implicated as risk factors for schizophrenia.Hum Mol Genet 2008;17:747-758[PMID:18045777 DOI:10.1093/hmg/ddm347]
    85 Adriani W,Boyer F,Gioiosa L,MacrìS,Dreyer JL,Laviola G.Increased impulsive behavior and risk proneness followinglentivirus-mediated dopamine transporter over-expression in rats’nucleus accumbens.Neuroscience 2009;159:47-58[PMID:19135135 DOI:10.1016/j.neuroscience.2008.11.042]
    86 Kr?ner S,Krimer LS,Lewis DA,Barrionuevo G.Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons.Cereb Cortex2007;17:1020-1032[PMID:16772311 DOI:10.1093/cercor/bhl012]
    87 Seamans JK,Gorelova N,Durstewitz D,Yang CR.Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons.J Neurosci 2001;21:3628-3638[PMID:11331392]
    88 Moghaddam B,Adams B,Verma A,Daly D.Activation of glutamatergic neurotransmission by ketamine:a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.J Neurosci 1997;17:2921-2927[PMID:9092613]
    89 Zarate CA,Singh JB,Carlson PJ,Brutsche NE,Ameli R,Luckenbaugh DA,Charney DS,Manji HK.A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.Arch Gen Psychiatry 2006;63:856-864[PMID:16894061 DOI:10.1001/archpsyc.63.8.856]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700