地震槽波的数学-物理模拟初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preliminary study on the numerical-physical simulation of seismic channel waves
  • 作者:皮娇龙 ; 滕吉文 ; 刘有山
  • 英文作者:PI JiaoLong;TENG JiWen;LIU YouShan;Institute of Geophysics,China Earthquake Administration;Institute of Geology and Geophysics,Chinese Academy of Sciences;
  • 关键词:Rayleigh型槽波 ; Love型槽波 ; 交错网格有限差分法 ; 数值模拟 ; 物理模拟
  • 英文关键词:Rayleigh channel wave;;Love channel wave;;Staggered-grid finite difference method;;Numerical simulation;;Physical simulation
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国地震局地球物理研究所;中国科学院地质与地球物理研究所;
  • 出版日期:2018-06-13
  • 出版单位:地球物理学报
  • 年:2018
  • 期:v.61
  • 基金:国家自然科学基金重点项目(41130419);; 中国地震局地球物理研究所基本科研业务费专项(DQJB15B15)联合资助
  • 语种:中文;
  • 页:DQWX201806027
  • 页数:13
  • CN:06
  • ISSN:11-2074/P
  • 分类号:311-323
摘要
针对地震槽波在低速层的传播特性,开展了煤层内地震槽波勘探的数值模拟和物理模拟研究的初探工作.在数值模拟研究方面,采用交错网格有限差分法对煤层中的地震槽波进行三分量全波场模拟.基于波场快照和人工合成地震记录研究了不同模型中的波场特征和各种波型的传播规律.在物理模拟方面,通过选用不同配比的环氧树脂和硅橡胶类材料构建地震槽波物理模型,利用透射法和反射法观测系统获得了清晰的地震槽波记录以研究槽波的地震学特征.研究表明,在煤层内槽波的地震波场中,Love型槽波的能量小于Rayleigh型槽波的SV分量,大于Rayleigh型槽波的SH分量.相对于Love型槽波和Rayleigh型槽波的SH分量,Rayleigh型槽波的SV分量在围岩中的泄露能量较强.在煤层界面附近的围岩中,地震波仍以槽波形式传播,随着距离的增加能量逐渐衰减.随着煤层变薄,煤层槽波主频向高频方向移动,频散现象增强,传播速度增大.
        In view of the propagation characteristics of seismic channel waves in the low-velocity layer,we make a preliminary study on the numerical simulation and physical simulation of these waves.In the aspect of numerical simulation,this paper adopts the staggered-grid finite difference method to conduct a 3-D seismic wavefield forward modeling of the channel waves in the coal seam.Based on the wave field snapshots and synthetic seismic records,the wave field characteristics of different models and the propagation laws of various waves are studied.In the physical simulation,this paper adopts the different proportions of the epoxy resin and the silicone rubber material to build a physical model.The clear channel waves are recorded by the transmission and reflection observation system.The results show that in the seismic wave field excited by the explosive source in the coal seam,the energy of Love channel waves are less than those of SV component of Rayleigh channel waves and greater than those of SH component of Rayleigh channel waves in the coal seam.With respect to the SH component of Rayleigh channel waves and Love channel waves,Rayleigh channel waves leakage energy in the surrounding rock is relatively strong.The seismic waves in surrounding rock near the coal seam still propagate aschannel waves.With the decreasing thickness of the coal seam,the channel waves are shifting toward dominant frequency,with stronger dispersion,and larger wave speed.
引文
Cheng J Y,Ji G Z,Zhu P M.2012.Love channel-waves dispersion characteristic analysis of typical coal models.Journal of China Coal Society(in Chinese),37(1):67-72.
    Cooper J K,Lawton D C,Margrave G F.2010.The wedge model revisited:A physical modeling experiment.Geophysics,75(2):T15-T21.
    Di B R,Xu X C,Wei J X.2008.A seismic modeling analysis of wide and narrow 3D observation systems for channel sand bodies.Applied Geophysics,5(3):294-300.
    Dong S H,Ma Y L,Zhou M.2004.Forward modeling of relationship between coal seam thickness and seismic attributes of amplitude and frequency.Journal of China University of Mining&Technology(in Chinese),33(1):29-32.
    Dresen L,Rüter H.1994.Seismic Coal Exploration Part B:InSeam Seismic.New York:Pergamon.
    Ebrom D A,Tatham R H,Sekharan K K,et al.1990.Hyperbolic traveltime analysis of first arrivals in an azimuthally anisotropic medium:aphysical modeling study.Geophysics,50(2):185-191.
    Festa G,Nielsen S.2003.PML absorbing boundaries.Bulletin of the Seismological Society of America,93(2):891-903.
    French W S.1974.Two-dimensional and three-dimensional migration of model-experiment reflection profiles.Geophysics,39(3):265-277.
    Grechka V,Pech A,Tsvankin I,et al.2001.Velocity analysis for tilted transversely isotropic media:A physical modeling example.Geophysics,66(3):904-910.
    Ji G Z,Cheng J Y,Zhu P M.2011.Numerical simulation of seam Love type channel-wave and analysis on dispersion features.Coal Science and Technology(in Chinese),39(6):106-109.
    Ji G Z,Cheng J Y,Zhu P M,et al.2012.3-D numerical simulation and dispersion analysis of in-seam wave in underground coal mine.Chinese Journal of Geophysics(in Chinese),55(2):645-654,doi:10.6038/j.issn.0001-5733.2012.02.028.
    Mou Y G.2003.Seismic Physical Modeling for 3-D Complex Media(in Chinese).Beijing:Petroleum Industry Press.
    Mou Y G,Pei Z L.2005.Seismic Numerical Modeling for 3-DComplex Media(in Chinese).Beijing:Petroleum Industry Press.
    Pi J L,Teng J W,Yang H,et al.2013.Research advance in analogue-numerical simulation on the dynamic characteristics of In-seam seismic and its application.Progress in Geophysics(in Chinese),28(2):958-974,doi:10.6038/pg20130250.
    Pi J L.2015.Attributes of the crust-mantle boundary(Moho)and material migration in Tibetan Plateau and numerical-physical simulation on channel waves[Ph.D.thesis](in Chinese).Beijing:Chinese Academy of Sciences.
    Stewart R R,Dyaur N,Omoboya B,et al.2013.Physical modeling of anisotropic domains:Ultrasonic imaging of laser-etched fractures in glass.Geophysics,78(1):D11-D19.
    Wandler A,Evans B,Link C.2007.AVO as a fluid indicator:a physical modeling study.Geophysics,72(1):C9-C17.
    Wei J X,Di B R.2008.Model study on influence of fracture apertures on seismic wave characteristics.Science in China(Series D:Earth Science),38(S1):211-218.
    Wei J X,Mou Y G,Di B R.2002.Study of 3-D seismic physical model.Oil Geophysical Prospecting(in Chinese),37(6):556-561.
    Wiley R W,McKnight R S,Sekharan K K.1996.Salt canopy 3-Dphysical modeling project.The Leading Edge,15(11):1249-1251.
    Yang S T,Cheng J L.2012.The method of small structure prediction ahead with Rayleigh channel wave in coal roadway and seismic wave field numerical simulation.Chinese Journal of Geophysics(in Chinese),55(2):655-662,doi:10.6038/j.issn.0001-5733.2012.02.029.
    Yang W Q.2001.Modeling research of channel wave seismic exploration.Geology and Prospecting(in Chinese),37(3):58-60.
    Yang X H,Li D C,Yu P F.2010.Analysis of Rayleigh channel wave dispersion in coal seam.Geophysical and Geochemical Exploration(in Chinese),34(6):750-752.
    Yang Z,Feng T,Wang S G.2010.Dispersion characteristics and wave shape mode of SH channel wave in a 0.9m-thin coal seam.Chinese Journal of Geophysics(in Chinese),53(2):442-449,doi:10.3969/j.issn.0001-5733.2010.02.023.
    Zhu Y P,Tsvankin I,Dewangan P,et al.2007.Physical modeling and analysis of P-wave attenuation anisotropy in transversely
    isotropic media.Geophysics,72(1):D1-D7.
    程建远,姬广忠,朱培民.2012.典型含煤模型Love型槽波的频散特征分析.煤炭学报,37(1):67-72.
    董守华,马彦良,周明.2004.煤层厚度与振幅、频率地震属性的正演模拟.中国矿业大学学报,33(1):29-32.
    姬广忠,程建远,朱培民.2011.煤层Love型槽波数值模拟及其频散特征分析.煤炭科学技术,39(6):106-109.
    姬广忠,程建远,朱培民等.2012.煤矿井下槽波三维数值模拟及频散分析.地球物理学报,55(2):645-654,doi:10.6038/j.issn.0001-5733.2012.02.028.
    牟永光.2003.三维复杂介质地震物理模拟.北京:石油工业出版社.
    牟永光,裴正林.2005.三维复杂介质地震数值模拟.北京:石油工业出版社.
    皮娇龙,滕吉文,杨辉等.2013.地震槽波动力学特征物理-数学模拟及应用进展.地球物理学进展,28(2):958-974,doi:10.6038/pg20130250.
    皮娇龙.2015.青藏高原壳-幔边界(Moho)属性与物质运移和地震槽波数学-物理模拟.北京:中国科学院大学.
    魏建新,狄帮让.2008.裂隙张开度对地震波特性影响的模型研究.中国科学,38(增):211-218.
    魏建新,牟永光,狄帮让.2002.三维地震物理模型的研究.石油地球物理勘探,37(6):556-561.
    杨思通,程久龙.2012.煤巷小构造Rayleigh型槽波超前探测数值模拟.地球物理学报,55(2):655-662,doi:10.6038/j.issn.0001-5733.2012.02.029.
    杨文强.2001.槽波地震勘探的数学模型研究.地质与勘探,37(3):58-60.
    杨小慧,李德春,于鹏飞.2010.煤层中瑞利型槽波的频散特性.物探与化探,34(6):750-752.
    杨真,冯涛,Wang S G.2010.0.9m薄煤层SH型槽波频散特征及波形模式.地球物理学报,53(2):442-449,doi:10.3969/j.issn.0001-5733.2010.02.023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700