不同RCP情景下山东省小麦、玉米关键生育期的气候变化预估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction of Climate Change in Key Growth Stages of Wheat and Maize in Shandong Province under Different RCP Scenarios
  • 作者:陈玉洁 ; 陈国庆 ; 王良 ; 刘晓静 ; 王兰 ; 刘肖瑜 ; 李学国
  • 英文作者:Chen Yujie;Chen Guoqing;Wang Liang;Liu Xiaojing;Wang Lan;Liu Xiaoyu;Li Xueguo;Agricultural College,Shandong Agricultural University;
  • 关键词:RCP情景 ; 冬小麦 ; 夏玉米 ; 温度 ; 降水量 ; 山东省
  • 英文关键词:RCP scenario;;Winter wheat;;Summer maize;;Temperature;;Precipitation;;Shandong Province
  • 中文刊名:AGRI
  • 英文刊名:Shandong Agricultural Sciences
  • 机构:山东农业大学农学院;
  • 出版日期:2018-08-30
  • 出版单位:山东农业科学
  • 年:2018
  • 期:v.50;No.324
  • 基金:国家自然科学基金项目(31471414)
  • 语种:中文;
  • 页:AGRI201808028
  • 页数:10
  • CN:08
  • ISSN:37-1148/S
  • 分类号:133-142
摘要
为了研究气候变化情况下小麦、玉米关键生育时期气候要素的变化趋势和对生产的适应性,选用基于BCC-CSM1-1气候系统模式下的3种不同浓度路径(RCP2.6、RCP4.5和RCP8.5)的模拟数据,研究了山东省冬小麦和夏玉米播种至出苗期和抽穗至灌浆期的最高温和降水量变化趋势。结果表明:在历史(1961—2005年)气候条件下,小麦季和玉米季关键生育期的最高温均呈增加趋势;在未来情景模式下,小麦季和玉米季播种至出苗期的最高温均在RCP2.6情景下呈下降趋势,在RCP4.5和RCP8.5情景下呈增加趋势,且在RCP8.5情景下增加最快,气侯倾向率分别为0.56、0.62℃/10a;小麦季和玉米季抽穗至灌浆期的最高温在3种RCP情景下均存在不同程度的增加趋势,在RCP8.5情景下增加最快,气候倾向率分别为0.45、0.76℃/10a。在历史气候条件下,小麦季播种至出苗期的降水量呈上升趋势,抽穗至灌浆期的降水量呈下降趋势,而玉米季两关键生育期的降水量均呈下降趋势;在未来情景模式下,小麦季播种至出苗期的降水量在3种RCP情景下均呈下降趋势,在RCP4.5情景下下降最快,气候倾向率为-0.43 mm/10a;小麦季抽穗至灌浆期和玉米季播种至出苗期的降水量均呈增加趋势,在RCP8.5情景下增加最快,气候倾向率分别为1.53、4.62mm/10a;玉米季抽穗至灌浆期的降水量在RCP2.6和RCP8.5情景下呈增加趋势,在RCP4.5情景下呈减少趋势,在RCP2.6情景下降水量增加最快,气候倾向率为2.41 mm/10a。综合来看,在RCP4.5和RCP8.5情景下玉米季关键生育时期最高温的增温速率均大于小麦季,而降水量的变化不显著,因此,在未来气候变化条件下,随着CO2浓度的增加,可通过调整播期和优化作物管理模式实现作物产量的提高。
        In order to study the variation tendency of climatic factors and adaptability to production of wheat and maize during the critical growth period in the case of climate change,the simulation data of 3 different concentration paths(RCP2.6,RCP4.5 and RCP8.5) based on the BCC-CSM1-1 climate system model were selected,the variation trend of maximum temperature and precipitation of winter wheat and summer maize from sowing to seedling and heading to filling stages were studied.The results showed that the highest temperature of wheat and maize at critical growth stages was increased in the historical(1961-2005) climate condition.Under the future scenario models,the highest temperature of wheat and maize at sowing to seedling stage decreased in the RCP2.6 scenarios,but increased in RCP8.5 and RCP4.5 scenarios.The maximum in-crease of the highest temperature was in RCP8.5 and the climate inclination rate was 0.56 and 0.62℃/10 a,respectively.The highest temperature of winter wheat and summer maize from heading to filling stage increased in different degrees under the 3 RCP scenarios;under the RCP8.5 scenario,the highest temperature increased the largest,and the climate inclination rate was 0.45 and 0.76℃/10 a,respectively.In the historical climate conditions,the precipitation of wheat from sowing to seedling increased,while it decreased from heading to filling stage,however,the precipitation of maize decreased during the critical growth stages.Under the future scenario model,the precipitation of wheat from sowing to seedling stage in the 3 RCP scenario all decreased,and it declined the fastest in the RCP4.5 scenario with the climate inclination rate as-0.43 mm/10 a.The precipitation in the wheat season from heading to filling stage and in the maize season from sowing to seedling stage all increased,and both increased the fastest in the RCP8.5 situation with the climate inclination rate as1.53 and 4.62 mm/10 a.The precipitation of maize season from heading to filling stage showed an increasing trend under the RCP2.6 and RCP8.5 scenarios,but showed a decreasing trend under the RCP4.5 scenario.In the RCP2.6 scenario,the increase of precipitation was the fastest and the climate inclination rate was 2.41 mm/10 a.In a comprehensive view,the temperature increasing rate of maize was higher than that of wheat in the RCP4.5 and RCP8.5 scenarios during all the critical growth stages,and there was no significant changes in precipitation.Therefore,with the increase of CO2 concentration,the purpose of increasing yield could be achieved by adjusting sowing date and optimizing crop management mode under the conditions of climate change in the future.
引文
[1]IPCC.Climate change 2013:The physical science basis[M].Cambridge:Cambridge University Press,2013.
    [2]IPCC.Climate change 2007:Impacts,adaptation and vulnerability[M].Cambridge:Cambridge University Press,2007.
    [3]HLPE.Climate change and food security[M].World Food Security,2012.
    [4]Meehl G A,Covey Curt,Delworth T,et al.The WCRP CMIP3multimodel dataset:a new era in climate change research[J].American Meteorological Society,2007,88:1383-1394.
    [5]Moss R,Edmonds J,Hibbard K,et al.The next generation of scenarios for climate change research and assessment[J].Nature,2009,463:747-756.
    [6]Wilby R L,Troni J,Biot Y,et al.A review of climate risk information for adaptation and development planning[J].Int.J.Clim.,2009,29:1193-1215.
    [7]王位泰,张天峰,蒲金涌,等.黄土高原中部冬小麦生长对气候变暖和春季晚霜冻变化的响应[J].中国农业气象,2011,32(1):6-11.
    [8]徐玲玲,吕厚荃,方利.气候变化对黄淮海地区夏玉米气候适宜度的影响[J].资源科学,2014,36(4):782-787.
    [9]张雪芹,彭莉莉,林朝晖.未来不同排放情景下气候变化预估研究进展[J].地球科学进展,2008,23(2):174-185.
    [10]占明锦,殷剑敏,孔萍,等.典型浓度路径(RCP)情景下未来50年鄱阳湖流域气候变化预估[J].科学技术与工程,2013,13(34):10107-10115.
    [11]王馥堂,赵宗慈,王石立,等.气候变化对农业生态的影响[M].北京:气象出版社,2003:45-53.
    [12]Teixeira E I,Fischer G,van Velthuizen H,et al.Global hotspots of heat stress on agricultural crops due to climate change[J].Agric.Forest Meteorol.,2013,170:206-215.
    [13]Lobell D B,Field C B.Global scale climate-crop yield relationships and the impact of recent warming[J].Environ.Res.Lett.,2007,2(1):1-7.
    [14]陆伟婷.近20年黄淮海地区气候变暖对夏玉米生育进程及产量的影响[J].中国农业科学,2015,48(16):3132-3245.
    [15]王石立,庄立伟,王馥棠.近20年气候变暖对东北农业生产水热条件影响的研究[J].应用气象学报,2003,14(2):152-164.
    [16]Lv S,Yang X G,Lin X M,et al.Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades[J].Agric.Forest Meteorol.,2015,205:1-10.
    [17]White J W,Hoogenboom G,Kimball B A,et al.Methodologies for simulating impacts of climate change on crop production[J].Field Crop Res.,2011,124(3):357-368.
    [18]杨建莹,梅旭荣,刘勤,等.气候变化背景下华北地区冬小麦生育期的变化特征[J].植物生态学报,2011,35(6):623-631.
    [19]庞艳梅,陈超,潘学标,等.未来气候变化对四川盆地玉米生育期气候资源及生产潜力的影响[J].中国生态农业学报,2013,21(12):1526-1536.
    [20]姬兴杰,朱业玉,刘晓迎,等.气候变化对北方冬麦区冬小麦生育期的影响[J].中国农业气象,2011,32(4):576-581.
    [21]魏凤英.现代气候统计诊断与预测技术[M].第二版.北京:气象出版社,2007.
    [22]Kim S K,Gitz D C,Sicher R C,et al.Temperature dependence of growth and development,and photosynthesis in maize under elevated CO2[J].Environ.Exp.Bot.,2007,61:224-236.
    [23]张厚瑄.中国种植制度对全球气候变化响应的有关问题Ⅰ.气候变化对我国种植制度的影响[J].中国农业气象,2000,21(1):10-14.
    [24]Rosenzweig C,Elliott J,Deyng D M,et al.Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison[J].Proc.Natl.Acad.Sci.U.S.A,2014,111(9):3268-3273.
    [25]张雪芹,彭莉莉,林朝辉.未来不同排放情景下气候变化预估研究进展[J].地球科学进展,2008(2):174-185.
    [26]Challinor A J,Smithc M S,Thorntond P.Use of agro-climate ensembles for quantifying uncertainty and informing adaptation[J].Agric.Forest Meteorol.,2013,170:2-7.
    [27]Laux P,Jackel G,Tingem R M,et al.Impact of climate change on agricultural productivity under rainfed conditions in Cameroon—a method to improve attainable crop yields by planting date adaptations[J].Agric.Forest Meteorol.,2010,150:1258-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700