平顶山矿区深部矿井动力灾害预测方法与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction method of deep mining dynamic disasters and its application in Pingdingshan mining area
  • 作者:张建国 ; 兰天伟 ; 王满 ; 高明忠 ; 荣海
  • 英文作者:ZHANG Jianguo;LAN Tianwei;WANG Man;GAO Mingzhong;RONG Hai;State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization;China Pingmei Shenma Energy and Chemical Group Corporation Limited;Mining Institute,Liaoning Technical University;Institute of Deep Earth Sciences and Green Energy,Shenzhen University;
  • 关键词:矿井动力灾害 ; 一级预测 ; 二级预测 ; 地质动力区划 ; 危险性评价
  • 英文关键词:mine dynamic disaster;;first level prediction;;second level prediction;;geo-dynamic division;;risk assessment
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:炼焦煤资源开发及综合利用国家重点实验室;中国平煤神马能源化工集团有限责任公司;辽宁工程技术大学矿业学院;深圳大学深地科学与绿色能源研究院;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家重点研发计划资助项目(2017YFC0804209)
  • 语种:中文;
  • 页:MTXB201906008
  • 页数:9
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:78-86
摘要
煤与瓦斯突出、冲击地压等矿井动力灾害严重威胁着我国深部矿井安全高效生产,当前总体缺乏准确的预测理论与方法。为了提高平顶山矿区深部开采阶段动力灾害发生的预防与治理水平,在分析矿区自然地质动力条件的前提下,以平顶山东部矿区为研究目标,基于最大主应力、应力梯度等因素对矿区动力灾害发生的潜在危险进行了预测分区,发现地形曲率对平顶山东部矿区的煤与瓦斯突出概率产生较大影响。平顶山东部矿区的正曲率半径范围内煤与瓦斯突出比率占总突出次数的80. 21%。同时,基于煤与瓦斯突出系统的能量特征,确定了平顶山东部矿区煤与瓦斯突出的临界能量为106J。在前期利用地质动力区划方法划分Ⅰ~Ⅴ级活动构造的研究基础上,进一步考虑开采活动作用的影响,明确目标煤层、目标采区动力灾害发生的模式,进行动力灾害二级预测。对八矿、十矿和十二矿规划区域划分Ⅵ级和Ⅴ级断裂构造,确定该区域断裂构造的分布特征和相互作用关系,建立相应的空间信息分析系统,分析活动构造的活动规律,发现平顶山东部矿区的煤体瓦斯主要受控于褶曲构造、断裂构造和构造之间的复合、联合、组合等地质构造。煤与瓦斯突出事故发生在地质构造带的次数占总次数的69. 6%。同时,确定了平顶山东部矿区的区域断裂构造的分布方式,Ⅵ级和Ⅴ级活动断裂区煤与瓦斯突出的局部分布特征。
        The mine dynamic disasters have seriously threatened the safe production of deep mines in China.However,the theory and method for accurately predicting these disasters are limited. In order to prevent and control the dynamic disasters in the deep mining of Pingdingshan mining area,the natural geo-dynamic conditions of Pingdingshan mining area is studied.The potential dynamic disasters in the coal mine are predicted by using the regional indexes such as active structure,maximum principal stress,stress gradient and so on.It is found that the curvature of the terrain has a great influence on the probability of coal and gas outburst in the eastern mining area of Pingdingshan.The ratio of coal and gas outburst in the positive curvature radius of the eastern mining area of Pingdingshan accounts for 80.21% of the total outbursts. At the same time,based on the energy characteristics of the coal and gas outburst system,the critical energy of coal and gas outburst in the eastern mining area of Pingdingshan is determined to be 106 J.On the basis of the study on the Division I to V active tectonics by using the geological dynamic zoning method in the early stage,the impact of mining activities is further considered.The patterns of dynamic disasters in the target coal seams and target mining areas are clarified,and the second-level prediction of dynamic disasters is carried out.Class Ⅵ and V fault structures are divided into the No.8,No.10 and No.12 mines,and the distribution characteristics and interaction relationships of the fault structures are determined.The corresponding spatial information analysis system is established,and the activity law of the active structures is analyzed.It is found that the coal body gas in the eastern mining area of Pingdingshan is mainly controlled by the geological structures such as the compound,joint and combination among folds,faults and other geological structures.Coal and gas outburst accidents occur in the geological tectonic belts,accounting for 69.6% of the total outbursts.At the same time,the distribution pattern of regional fault structures and the local distribution characteristics of coal and gas outbursts in the active fault areas of grade VI and V in the eastern mining area of Pingdingshan are determined.
引文
[1]潘一山.煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J].煤炭学报,2016,41(1):105-112.PAN Yishan. Integrated study on compound dynamic disaster of coal-gas outburst and rockburst[J].Journal of China Coal Society,2016,41(1):105-112.
    [2]于不凡.煤和瓦斯突出与地应力的关系[J].工业安全与防尘,1985(3):2-6.YU Bufan. Relationship between coal and gas outburst and ground stress[J].Industrial Safety and Dust Control,1985(3):2-6.
    [3]张宏伟.地质动力区划方法在煤与瓦斯突出区域预测中的应用[J].岩石力学与工程学报,2003,22(4):621-624.ZHANG Hongwei. Application of geo-dynamic division method in prediction of coal and gas outburst region[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(4):621-624.
    [4]韩军,张宏伟,宋卫华,等.构造凹地煤与瓦斯突出发生机制及其危险性评估[J].煤炭学报,2011,36(S1):108-113.HAN Jun,ZHANG Hongwei,SONG Weihua,et al.Coal and gas outburst mechanism and risk analysis of tectonic concave[J].Journal of China Coal Society,2011,36(S1):108-113.
    [5]尹光志,李小双,赵洪宝,等.瓦斯压力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2009,28(4):697-702.YIN Guangzhi,LI Xiaoshuang,ZHAO Hongbao,et al. Experimental study of effect of gas pressure on gas seepage of outburst coal[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(4):697-702.
    [6]程远平,张晓磊,王亮.地应力对瓦斯压力及突出灾害的控制作用研究[J].采矿与安全工程学报,2013,30(3):408-414.CHENG Yuanping,ZHANG Xiaolei,WANG Liang.Controlling effect of ground stress on gas pressure and outburst disaster[J]. Journal of Mining and Safety Engineering,2013,30(3):408-414.
    [7]姜福兴,曲效成,王颜亮,等.基于云计算的煤矿冲击地压监控预警技术研究[J].煤炭科学技术,2018,46(1):199-206,244.JIANG Fuxing,QU Xiaocheng,WANG Yanliang,et al. Study on monitoring&control and early warning technology of mine pressure bump based on cloud computing[J]. Coal Science and Technology,2018,46(1):199-206,244.
    [8]齐黎明,陈学习,薛俊华.煤层赋存状态突变对动力灾害的影响[J].煤炭工程,2012(12):92-94.QI Liming,CHEN Xuexi,XUE Junhua. Sudden change of seam deposit condition affected to dynamic disaster[J]. Coal Engineering,2012(12):92-94.
    [9]张晓东,张子戌.井田地质构造对煤与瓦斯突出影响的定量研究[J].焦作工学院学报(自然科学版),2001,20(6):409-412.ZHANG Xiaodong,ZHANG Zixu. Quantitative research to coal mine structure acting on coal and gas outburst[J].Journal of Jiaozuo Institute of Technology(Natural Science),2001,20(6):409-412.
    [10]王振.煤岩瓦斯动力灾害新的分类及诱发转化条件研究[D].重庆:重庆大学,2010.WANG Zhen.New classification and induced transformation conditions of gas dynamic disasters in coal and rock[D]. Chongqing:Chongqing University,2010.
    [11]王桂峰,窦林名,蔡武,等.冲击地压的不稳定能量触发机制研究[J].中国矿业大学学报,2018,47(1):190-196.WANG Guifeng,DOU Linming,CAI Wu,et al. Study on unstable energy triggering mechanism of rockburst[J].Journal of China University of Mining and Technology,2018,47(1):190-196.
    [12]连现忠.岩体应力状态对煤与瓦斯突出的影响研究[D].阜新:辽宁工程技术大学,2012.LIAN Xianzhong.Research on the influence of rock mass stress state on coal and gas outburst[D].Fuxin:Liaoning Technical University,2012.
    [13]代志旭,石祥超.地形曲率对煤与瓦斯突出的影响初探[J].煤炭学报,2012,37(9):1541-1546.DAI Zhixu,SHI Xiangchao. The influence of terrain curvature on coal and gas outburst[J]. Journal of China Coal Society,2012,37(9):1541-1546.
    [14]兰天伟,张宏伟,李胜,等.矿井冲击地压危险性预测的多因素模式识别[J].中国安全科学学报,2013,23(3):33-38.LAN Tianwei,ZHANG Hongwei,LI Sheng,et al. Multi-factor pattern recognition method for predicting mine rock burst risk[J].China Safety Science Journal,2013,23(3):33-38.
    [15]王志辉.孙村矿冲击地压区域预测研究[D].阜新:辽宁工程技术大学,2006.WANG Zhihui. Research on regional prediction of rockburst about suncun coalmine[D].Fuxin:Liaoning Technical University,2006.
    [16] DOU Linming,MU Zonglong,LI Zhenlei,et al. Research progress of monitoring,forecasting,and prevention of rockburst in underground coal mining in China[J].International Journal of Coal Science&Technology,2014,1(3):278-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700