用户名: 密码: 验证码:
班公湖-怒江缝合带西段洞错石榴石麻粒岩岩石学特征及其构造意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrology and tectonic implications of garnet granulite from Dong Tso,western Bangong-Nujiang suture zone
  • 作者:苑婷媛 ; 刘焰 ; 张惠民
  • 英文作者:YUAN TingYuan;LIU Yan;ZHANG HuiMin;China University of Geosciences;State Key Laboratory of Continental Tectonics and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences;Chengdu University of Technology;
  • 关键词:洞错 ; 石榴石麻粒岩 ; 热俯冲 ; 角闪石脱水熔融 ; 高氧逸度的埃达克质岩浆 ; 班公湖-怒江缝合带
  • 英文关键词:Dong Tso;;Garnet granulite;;Warm subduction;;Amphibole dehydration melting;;Adakite magma with high oxygen fugacity;;Bangong-Nujiang suture zone
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质大学;大陆构造与动力学国家重点实验室,中国地质科学院地质研究所;成都理工大学;
  • 出版日期:2015-12-15
  • 出版单位:岩石学报
  • 年:2015
  • 期:v.31
  • 基金:中国地质调查局青藏专项项目(12120114057601)资助
  • 语种:中文;
  • 页:YSXB201512011
  • 页数:11
  • CN:12
  • ISSN:11-1922/P
  • 分类号:157-167
摘要
班公湖-怒江缝合带是青藏高原中部一条重要的构造边界,将北部的羌塘地块与南部的拉萨地块分隔开,当前对班公湖-怒江洋壳的俯冲过程知之甚少,本文报道班公湖-怒江缝合带西段洞错地区的石榴石麻粒岩,将有助于提升班公湖-怒江缝合带构造演化过程的认识。石榴石麻粒岩呈5.0~_10mm的透镜体产出于斜长角闪岩内,后者呈构造岩片产出于班公湖-怒江缝合带内,与超基性岩片呈断层接触。石榴石麻粒岩的石榴石呈变斑晶产出,具有不规则的成分环带,石榴石核部成分较均匀,以富Ca和Mg,贫Fe和Mn为特征,石榴石边缘及内部裂隙成分则与之相反,富Fe和Mn,与绿泥石和黝帘石组成的细脉共生,反映了石榴石遭受后期流体的交代作用。单斜辉石为透辉石,在其内部发现早期进变质阶段的细小石榴石与角闪石颗粒,石榴石粒径<_10μm,该石榴石相对富Fe和Mn,贫Ca和Mg。角闪石均为钙质系列的角闪石,早期角闪石以相对富Na和Fe~(3+),含有微量Ba,而与晚期角闪石区分开。早期角闪石常产出于石榴石和透辉石变斑晶内部,脱水熔融生成富Ca、贫Fe~(3+)和Na的透辉石和以钠长石为主的熔融囊体,囊体内部发育斜长石和富Ba冰长石的包体/出溶体。晚期角闪石常与斜长石呈细小的后成合晶产出于石榴石边部或呈变斑晶产出于基质之中,表明斜长角闪岩系石榴石麻粒岩退变质的产物。此外,金红石斑晶常变成细粒、不规则的贫Al榍石和钛铁矿,基质中有相对富Al榍石产出。因此该麻粒岩进变质阶段矿物组合由早期石榴石(Grt__1)、早期角闪石(Amp_1)、相对富Al的榍石(Spn_1)等矿物组成。峰期矿物组合包括:核部石榴石(Grt2)+透辉石+斜长石(Pl_1)+石英+金红石+富Na和Ba的熔体,采用传统温/压计估算此峰期矿物组合形成条件为870℃、11.7kbar。退变质矿物组合有:边部石榴石(Grt3)+晚期贫Na和Fe~(3+)的角闪石(Amp_1)+黝帘石+绿泥石+斜长石(Pl_2)+白云母+贫Al榍石(Spn2)+钛铁矿。岩相学观察与地球化学示踪、变质温压估计表明洞错石榴石麻粒岩系热洋壳俯冲的产物,为前人提出的"班公-怒江洋盆包含次级小洋盆"之观点提供了变质岩石学的证据。从峰期到退变质阶段,角闪石的Fe~(3+)含量明显下降,铁铝榴石含量明显升高,指示该麻粒岩经历了还原反应,早期角闪石脱水熔融时被还原,生成了高氧逸度的埃达克质岩浆,促进了Cu、Au等成矿元素从俯冲热洋壳的活化与迁移至弧岩浆之中,因此本文的研究提供了一个探讨俯冲热洋壳与上覆地幔楔之间化学反应的研究案例,这有助于理解班公-怒江成矿带内众多斑岩型铜、金矿床的形成。
        Separating the Qiangtang terrane in the north and the Lhasa block in the south,the Bangong-Nujiang suture zone is an important tectonic boundary within Central Tibet. However,subduction of the Bangong-Nujiang oceanic crust remains obscure. Here we report several garnet granulites in the vicinity of Dong Tso area,western Bangong-Nujiang suture zone,contributing to understand the tectonic evolution of Bangong-Nujiang suture zone. The garnet granulites as lenses in size of 5. 0 ~ 10 mm are distinguished in amphibolites,which occur as tectonic slices in the Bangong-Nujiang suture zone and structurally contacting with ultramafic and mafic rocks. The garnet grains within garnet granulites present as porphyroblasts with irregularly compositional zonation. The composition of garnet core is more homogeneous and characterized by higher Ca and Mg but lower Fe and Mn than the garnet rim. Moreover the rims and cracks of garnet show paragenetic relationship with fine veins composed of chlorite and clinozoisite indicating that the garnet grains suffered metasomatism by later fluids. Fine-grained early garnets and amphiboles were found as inclusions in diopside. These garnets are smaller than 10μm and characterized by higher Fe and Mn but lower Ca and Mg than the garnet core. All the amphiboles are calcic amphiboles. The early amphiboles are different from the late amphiboles by their enrichment in Na,Fe3 +,as well as trace amount of Ba. The early amphiboles normally as inclusions in garnet and diopside porphyroblasts have been transformed into diopsides( rich in Ca but poor in Fe~(3+) and Na) and melt pockets dominanted by albite. Inclusions / exsolutions composed of plagioclases and Ba-rich hyalophanes are widely distributed in the melt pockets. The late amphiboles occur as fine-grained symplectite with plagioclases surrounding the rim of garnet or present as porphyroblast in matrix,suggesting that they are retrograde products of garnet granulites. In addition,sphenes( rich in Al) are found in the matrix and rutile grains have been replaced by fine and irregular sphene( poor in Al)and ilmenite. Therefore the mineral assemblage of prograde stage is consisting of early garnet( Grt_1),early amphibole( Amp_1),Alrich sphene( Spn_1) and so on. The peak metamorphic stage is documented by garnet core( Grt_2) + diopside + plagioclase( Pl_1) +quartz + rutile + Na-rich and Ba-rich melts,which formed at 870℃,11.7kbar on the basis of traditional geothermobarometer.Garnet rim / crack( Grt_3) + late amphibole( Amp_2) + clinozoisite + chlorite + plagioclase( Pl_2) + white mica + Al-poor sphene( Spn_2) + ilmenite are regarded as the retrograde stage assemblage. In combination with petrographic and geochemical investigations and estimation of metamorphic P-T condition indicates that Dong Tso garnet granulites are products of warm subduction of oceanic crust,providing petrological evidence for the view that ‘the Bangong-Nujiang oceanic basin contains many sub-oceanic basin'. The significant decrease of Fe~(3+)( a. p. f. u) in amphibole and marked increase of almandine from peak to retrograde stage reveals that the Dong Tso garnet granulites suffered reduction reaction and the amphiboles were redoxed during dehydration,generating adakite magmawith high oxygen fugacity which promotes the activation from subducted warm oceanic crust and migration to arc magma of ore-forming elements,such as Cu and Au. Therefore,our work provides a case study of the chemical interactions and material migration between subducted warm oceanic slab and overlying subarc mantle wedge,and also contributes to intensively understanding the formation of numerous porphyry-type copper and gold deposits within the Bangong-Nujiang metallogenic belt.
引文
Allégre CJ,Courtillot V,Tapponnier P et al.1984.Structure and evolution of the Himalaya-Tibet orogenic belt.Nature,307(5946):17-22
    Chang CF and Zheng XL.1973.Some tectonic features of the MT.Jolmo Lungma area,southern Tibet,China.Science in China(Series A),16(2):257-265
    Chang CF,Chen NS,Coward MP et al.1986.Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet.Nature,323(6088):501-507
    Chen HQ,Qu XM and Fan SF.2015.Geological characteristics and metallogenic_prospecting model of Duolong porphyry copper-gold ore concentration area in Gerze County,Tibet.Mineral Deposits,34(2):321-332(in Chinese with English abstract)
    Defant MJ and Drummond MS.1990.Derivation of some modern arc magmas by melting of young subducted lithosphere.Nature,347(6294):662-665
    Dewey JF,Shackleton RM,Chang CF and Sun YY.1988.The tectonic evolution of the Tibetan Plateau.Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,327(1594):379-413
    Droop GTR.1987.A general equation for estimating Fe3+concentration in ferromagnesian silicates and oxides from microprobe analyses,using stoichiometric criteria.Mineralogical Magazine,51(361):431-435
    Eckert JO,Newton RC and Kleppa OJ.1991.TheΔH of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry.American Mineralogist,76(1-2):148-160
    Ernst WG.1999.Hornblende,the continent maker:Evolution of H2Oduring circum-Pacific subduction versus continental collision.Geology,27(8):675-678
    García-Casco A,Lázaro C,Rojas-Agramonte Y,Krner A,TorresRoldán RL,ez K,Neubauer F,Millán G and Blanco-Quintero I.2008.Partial melting and counterclockwise P-T path of subducted oceanic crust(Sierra del Convento mélange,Cuba).Journal of Petrology,49(1):129-161
    Gill JB.1981.Orogenic Andesites and Plate Tectonics.New York:Springer-Verlag,1-315
    Girardeau J,Marcoux J,Allègre CJ,Bassoullet JP,Youking T,Xiao XC,Zao YG and Wang XB.1984.Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite,Bangong-Nujiang suture zone,Tibet.Nature,307(5946):27-31
    Girardeau J,Marcoux J,Fourcade E,Bassoullet JP and Tang YK.1985.Xainxa ultramafic rocks,central Tibet,China:Tectonic environment and geodynamic significance.Geology,13(5):330-333
    Hattori KH and Keith J.2001.Contribution of mafic melt to porphyry copper mineralization:Evidence from Mount Pinatubo,Philippines,and Bingham Canyon,Utah,USA.Mineralium Deposita,36(8):799-806
    Holzheid A and Lodders K.2001.Solubility of copper in silicate melts as function of oxygen and sulfur fugacities,temperature,and silicate composition.Geochimica et Cosmochimica Acta,65(12):1933-1951
    Jarrard RD.2003.Subduction fluxes of water,carbon dioxide,chlorine,and potassium.Geochemistry,Geophysics,Geosystems,4(5):8905
    Kapp P,Murphy MA,Yin A,Harrison TM,Ding L and Guo JH.2003.Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet.Tectonics,22(4):1029,doi:10.1029/2001TC001332
    Leake BE,Woolley AR,Arps CES et al.1997.Nomenclature of amphiboles:Report of the subcommittee on amphiboles of the international mineralogical association,commission on new minerals and mineral names.The Canadian Mineralogist,35:219-246
    Li C,Zhai QG,Dong YS and Huang XP.2006.Discovery of eclogite and its geological significance in Qiangtang area,central Tibet.Chinese Science Bulletin,51(9):1095-1100
    Li GM,Li JX,Qin KZ,Zhang TP and Xiao B.2006.Preliminary study on alteration and mineralization features and high-oxidated oreforming fluids at Duobuza super-large Au-rich porphyry Cu deposit,western Tibet.Mineral Deposits,25(Suppl.):411-414(in Chinese)
    Li GM,Li JX,Qin KZ,Zhang TP and Xiao B.2007.High temperature,salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper deposit in the Bangonghu tectonic belt,Tibet:Evidence from fluid inclusions.Acta Petrologica Sinica,23(5):935-952(in Chinese with English abstract)
    Li JX,Qin KZ and Li GM.2006.Basic characteristic of gold-rich porphyry copper deposits and their ore sources and evolving processes of high oxidation magma and ore-forming fluid.Acta Petrologica Sinica,22(3):678-688(in Chinese with English abstract)
    Li JX,Li GM,Qin KZ and Xiao B.2008.Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza goldrich porphyry copper deposit in Bangonghu belt,Tibet:Constraints on metailogenic tectonic settings.Acta Petrologica Sinica,24(3):531-543(in Chinese with English abstract)
    Li Y,Ling MX,Ding X,Liu J,Han F and Sun WD.2009.Adakites or adakitic rocks and associated metallogenesis in eastern China.Geotectonica et Metallogenia,33(3):448-464(in Chinese with English abstract)
    Li ZJ,Tang JX,Yao XF,Duo J,Liu HF,Deng SL,Zhang Z,Zhang JSand Hu ZH.2011.Geological characteristics and prospecting potential of Gaerqiong copper-gold polymetallic deposit in Ali district,northern Tibet.Mineral Deposits,30(6):1149-1153(in Chinese with English abstract)
    Liu HF and Liu Y.2009.Garnet glaucophane blueschist from Pana:Implications to Tibetan tectonic evolution.Acta Petrologica et Mineralogica,28(3):199-214(in Chinese with English abstract)
    Liu Y,Liu HF,Theye T and Massonne HJ.2009.Evidence for oceanic subduction at the NE Gondwana margin during Permo-Triassic times.Terra Nova,21(3):195-202
    Liu Y and LüYZ.2011.Pseudosection modelling of garnet blueschist from Rongma Area,central Qiangtang,North Tibet:Implications to the tectonic evolution of central Qiangtang.Earth Science Frontiers,18(2):100-115(in Chinese with English abstract)
    Liu Y,Santosh M,Yuan TY,Li HQ and Li TF.2015.Reduction of buried oxidized oceanic crust during subduction.Gondwana Reasearch,doi:10.1016/j.gr.2015.02.014
    Matte P,Tapponnier P,Arnaud N,Bourjot L,Avouav JP,Vidal P,Liu Q,Pan YS and Wang Y.1996.Tectonics of Western Tibet,between the Tarim and the Indus.Earth and Planetary Science Letters,142(3-4):311-330
    Oyarzun R,Márquez A,Lillo J,López I and Rivera S.2001.Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal calc-alkaline magmatism.Mineralium Deposita,36(8):794-798
    Oyarzun R,Márquez A,Lillo J,López I and Rivera S.2002.Reply to discussion on‘Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal calc-alkaline magmatism’by Oyarzun R,Márquez A,Lillo J,Lopez I,Rivera S(Mineralium Deposita 36:794-798,2001).Mineralium Deposita,37(8):795-799
    Pan GT,Wang LQ,Li RS,Yin FG and Zhu DC.2012.Tectonic model of archipelagic arc-basin systems:The key to the continental geology.Sedimentary Geology and Tethyan Geology,32(3):1-20(in Chinese with English abstract)
    Pan GT,Wang LQ,Li RS,Yuan SH,Ji WH,Yin FG,Zhang WP and Wang BD.2012.Tectonic evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences,53:3-14
    Peacock SM.1993.The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust.Geological Society of America Bulletin,105(5):684-694
    Peacock SM,Rushmer T and Thompson AB.1994.Partial melting of subducting oceanic crust.Earth and Planetary Science Letters,121(1-2):227-244
    Peacock SM and Wang K.1999.Seismic consequences of warm versus cool subduction metamorphism:Examples from southwest and northeast Japan.Science,286(5441):937-939
    Qian Q and Hermann J.2013.Partial melting of lower crust at 10~15kbar:Constraints on adakite and TTG formation.Contributions to Mineralogy and Petrology,165(6):1195-1224
    Qu XM,Wang RJ,Xin HB,Zhao YY and Fan XT.2009.Geochronology and geochemistry of igneous rocks related to the subduction of Tethys oceanic plate along the Bangong Lake arc zone,the western Tibetan Plateau.Geochimica,38(6):523-535(in Chinese with English abstract)
    Qu XM,Xin HB,Du DD and Chen H.2012.Ages of post-collisional A-type granite and constraints on the closure of the oceanic basin in the middle segment of the Bangonghu-Nujiang suture,the Tibetan Plateau.Geochimica,41(1):1-14(in Chinese with English abstract)
    Ravna K.2000.The garnet-clinopyroxene Fe2+-Mg geothermometer:An updated calibration.Journal of Metamorphic Geology,18(2):211-219
    Ren JS and Xiao LW.2004.Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1∶250000 geological mapping.Geological Bulletin of China,23(1):1-11(in Chinese with English abstract)
    Ripley EM and Brophy JG.1995.Solubility of copper in a sulfur-free mafic melt.Geochimica et Cosmochimica Acta,59(23):5027-5030
    Ripley EM,Brophy JG and Li C.2002.Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe.Geochimica et Cosmochimica Acta,66(15):2791-280
    Schmidt MW and Poli S.1998.Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation.Earth and Planetary Science Letters,163(1-4):361-379
    Sillitoe RH.2010.Porphyry copper systems.Economic Geology,105(1):3-41
    Srimal N.1986.India-Asia collision:Implications from the geology of the eastern Karakoram.Geology,14(6):523-527
    Sun WD,Ling MX,Yang XY,Fan WM,Ding X and Liang HY.2010.Ridge subduction and porphyry copper-gold mineralization:An overview.Science China(Earth Sciences),53(4):475-484
    Vielzeuf D and Schmidt MW.2001.Melting relations in hydrous systems revisited:Applications to metapelites,metagreywackes and metabasalts.Contributions to Mineralogy and Petrology,141(3):251-267
    Wang JZ,Li CY and Hu RZ.2001.Research progress in porphyry copper deposit.Advance in Earth Sciences,16(4):514-519(in Chinese with English abstract)
    Wang WL,Aitchison JC,Lo CH and Zeng QG.2008.Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture,central Tibet.Journal of Asian Earth Sciences,33(1-2):122-138
    Whitney DL and Evans BW.2010.Abbreviations for names of rockforming minerals.American Mineralogist,95(1):185-187
    Xiao L and Clemens JD.2007.Origin of potassic(C-type)adakite magmas:Experimental and field constraints.Lithos,95(3-4):399-414
    Xu MJ,Li C,Zhang XZ and Wu YW.2014.Nature and evolution of the Neo-Tethys in central Tibet:Synthesis of ophiolitic petrology,geochemistry,and geochronology.International Geology Review,56(9):1072-1096
    Xu WG,Fan HR,Hu FF and Yang KF.2011.Ore-forming fluids of the oxidized and reduced porphyry deposits.Earth Science Frontiers,18(5):103-120(in Chinese with English abstract)
    Yin A and Harrison TM.2000.Geologic evolution of the HimalayanTibetan Orogen.Annual Review of Earth and Planetary Sciences,28:211-280
    Zhai QG,Wang J and Wang Y.2009.Discovery of eclogite at Gangmacuo area from Gerze County,Tibet,China.Geological Bulletin of China,28(12):1720-1724(in Chinese with English abstract)
    Zhang KJ,Zhang YX,Tang XC and Xia B.2012.Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision.Earth-Science Reviews,114(3-4):236-249
    常承法,郑锡澜.1973.中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨.中国科学(A辑),(2):190-201
    陈红旗,曲晓明,范淑芳.2015.西藏改则县多龙矿集区斑岩型铜金矿床的地质特征与成矿-找矿模型.矿床地质,34(2):321-332
    李才,翟庆国,董永胜,黄小鹏.2006.青藏高原羌塘中部榴辉岩的发现及其意义.科学通报,51(1):70-74
    李光明,李金祥,秦克章,张天平,肖波.2006.西藏多不杂超大型富金斑岩铜矿的蚀变-矿化特征及高氧化成矿流体初步研究.矿床地质,25(增刊):411-414
    李光明,李金祥,秦克章,张天平,肖波.2007.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据.岩石学报,23(5):935-952
    李金祥,秦克章,李光明.2006.富金斑岩型铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆-流体演化.岩石学报,22(3):678-688
    李金祥,李光明,秦克章,肖波.2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报,24(3):531-543
    李印,凌明星,丁兴,刘健,韩峰,孙卫东.2009.中国东部埃达克岩及成矿作用.大地构造与成矿学,33(3):448-464
    李志军,唐菊兴,姚晓峰,多吉,刘鸿飞,邓世林,张志,张金树,胡正华.2011.藏北阿里地区新发现的尕尔穷铜金多金属矿床地质特征及其找矿前景.矿床地质,30(6):1149-1153
    刘鸿飞,刘焰.2009.旁那石榴蓝闪片岩特征及其构造意义.岩石矿物学杂质,28(3):199-214
    刘焰,吕永增.2011.西藏羌塘中部绒马地区石榴蓝闪片岩变质演化过程的视剖面模拟及其意义.地学前缘,18(2):100-115
    潘桂棠,王立全,李荣社,尹福光,朱弟成.2012.多岛弧盆系构造模式:认识大陆地质的关键.沉积与特提斯地质,32(3):1-20
    曲晓明,王瑞江,辛洪波,赵元艺,樊兴涛.2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学,38(6):523-535
    曲晓明,辛洪波,杜德道,陈华.2012.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学,41(1):1-14
    任纪舜,肖黎薇.2004.1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报,23(1):1-11
    孙卫东,凌明星,杨晓勇,范蔚茗,丁兴,梁华英.2010.洋脊俯冲与斑岩铜金矿成矿.中国科学(地球科学),40(2):127-137
    王奖臻,李朝阳,胡瑞忠.2001.斑岩铜矿研究的若干进展.地球科学进展,16(4):514-519
    徐文刚,范宏瑞,胡芳芳,杨奎锋.2011.氧化性和还原性斑岩型矿床流体成矿特征分析.地学前缘,18(5):103-120
    翟庆国,王军,王永.2009.西藏改则县冈玛错地区发现榴辉岩.地质通报,28(12):1720-17
    1曾庆高,毛国政,王保弟等.2006.改则幅(145C004001)1∶250000区域地质调查报告.拉萨:西藏自治区地质调查院

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700