Bone regeneration with adipose derived stem cells in a rabbit model
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bone regeneration with adipose derived stem cells in a rabbit model
  • 作者:Michele ; Maglione ; Enrico ; Salvador ; Maria ; E.Ruaro ; Mauro ; Melato ; Giuliana ; Tromba ; Daniele ; Angerame ; Lorenzo ; Bevilacqua
  • 英文作者:Michele Maglione;Enrico Salvador;Maria E.Ruaro;Mauro Melato;Giuliana Tromba;Daniele Angerame;Lorenzo Bevilacqua;Department of Medical Sciences,University of Trieste;SISSA-International School for Advanced Studies;Department of Pathology and Legal Medicine, University of Trieste;Elettra-Sincrotrone Trieste S.C.p.A.;
  • 英文关键词:bone regeneration;;regenerative medicine;;stem cells;;tissue engineering
  • 中文刊名:NJYY
  • 英文刊名:生物医学研究杂志(英文版)
  • 机构:Department of Medical Sciences,University of Trieste;SISSA-International School for Advanced Studies;Department of Pathology and Legal Medicine, University of Trieste;Elettra-Sincrotrone Trieste S.C.p.A.;
  • 出版日期:2019-01-15
  • 出版单位:The Journal of Biomedical Research
  • 年:2019
  • 期:v.33
  • 语种:英文;
  • 页:NJYY201901005
  • 页数:8
  • CN:01
  • ISSN:32-1810/R
  • 分类号:44-51
摘要
It has been shown that stem cells are able to calcify both in vitro and in vivo once implanted under the skin, if conveniently differentiated. Nowadays, however, a study on their efficiency in osseous regeneration does not exist in scientific literature and this very task is the real aim of the present experimentation. Five different defects of 6 mm in diameter and 2 mm in depth were created in the calvaria of 8 white New Zealand rabbits. Four defects were regenerated using 2 different conveniently modified scaffolds(Bio-Oss Block and Bio-Oss Collagen, Geistlich),with and without the aid of stem cells. After the insertion, the part was covered with a collagen membrane fixed by 5 modified titan pins(Altapin). The defect in the front was left empty on purpose as an internal control to each animal.Two animals were sacrificed respectively after 2, 4, 6, 10 weeks. The samples were evaluated with micro-CT and histological analysis. Micro-CT analysis revealed that the quantity of new bone for samples with Bio-Oss Block and stem cells was higher than for samples with Bio-Oss Block alone. Histological analysis showed that regeneration occurred in an optimal way in every sample treated with scaffolds. The findings indicated that the use of adult stem cells combined with scaffolds accelerated some steps in normal osseous regeneration.
        It has been shown that stem cells are able to calcify both in vitro and in vivo once implanted under the skin, if conveniently differentiated. Nowadays, however, a study on their efficiency in osseous regeneration does not exist in scientific literature and this very task is the real aim of the present experimentation. Five different defects of 6 mm in diameter and 2 mm in depth were created in the calvaria of 8 white New Zealand rabbits. Four defects were regenerated using 2 different conveniently modified scaffolds(Bio-Oss Block and Bio-Oss Collagen, Geistlich),with and without the aid of stem cells. After the insertion, the part was covered with a collagen membrane fixed by 5 modified titan pins(Altapin). The defect in the front was left empty on purpose as an internal control to each animal.Two animals were sacrificed respectively after 2, 4, 6, 10 weeks. The samples were evaluated with micro-CT and histological analysis. Micro-CT analysis revealed that the quantity of new bone for samples with Bio-Oss Block and stem cells was higher than for samples with Bio-Oss Block alone. Histological analysis showed that regeneration occurred in an optimal way in every sample treated with scaffolds. The findings indicated that the use of adult stem cells combined with scaffolds accelerated some steps in normal osseous regeneration.
引文
[1]Kakudo N, Shimotsuma A, Miyake S, et al.Bone tissue engineering using human adipose-derived stem cells and honeycomb collagen scaffold[J].J Biomed Mater Res A,2008, 84(1):191-197.
    [2]Pelled G, Ben-Arav A, Hock C, et al.Direct gene therapy for bone regeneration:gene delivery, animal models, and outcome measures[J].Tissue Eng Part B Rev, 2010, 16(1):13-20.
    [3]Fillingham Y, Jacobs J.Bone grafts and their substitutes[J].Bone Joint J, 2016, 98-B(1 Suppl A):6-9.
    [4]Nazirkar G, Singh S, Dole V, et al.Effortless effort in bone regeneration:a review[J].J Int Oral Health, 2014, 6(3):120-124.
    [5]Zuk PA, Zhu M, Mizuno H, et al.Multilineage cells from human adipose tissue:implications for cell-based therapies[J].Tissue Eng, 2001, 7(2):211-228.
    [6]Dennis JE, Merriam A, Awadallah A, et al.A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse[J].J Bone Miner Res, 1999, 14(5):700-709.
    [7]Kim KS, Lee JH, Ahn HH, et al.The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds[J].Biomaterials, 2008, 29(33):4420-4428.
    [8]Hattori H, Sato M, Masuoka K, et al.Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source[J].Cells Tissues Organs, 2004, 178(1):2-12.
    [9]Strem BM, Hicok KC, Zhu M, et al.Multipotential differentiation of adipose tissue-derived stem cells[J].Keio J Med, 2005,54(3):132-141.
    [10]De Ugarte DA, Morizono K, Elbarbary A, et al.Comparison of multi-lineage cells from human adipose tissue and bone marrow[J].Cells Tissues Organs, 2003, 174(3):101-109.
    [11]Halvorsen YD, Franklin D, Bond AL, et al.Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells[J].Tissue Eng, 2001, 7(6):729-741.
    [12]Zuk PA, Zhu M, Ashjian P, et al.Human adipose tissue is a source of multipotent stem cells[J].Mol Biol Cell, 2002,13(12):4279-4295.
    [13]Canciani E, Dellavia C, Ferreira LM, et al.Human adiposederived stem cells on rapid prototyped three-dimensional hydroxyapatite/beta-tricalcium phosphate scaffold[J].J Craniofac Surg, 2016, 27(3):727-732.
    [14]Rietze RL, Valcanis H, Brooker GF, et al.Purification of a pluripotent neural stem cell from the adult mouse brain[J].Nature, 2001, 412(6848):736-739.
    [15]Hollinger JO, Kleinschmidt JC.The critical size defect as an experimental model to test bone repair materials[J].J CraniofacSurg, 1990, 1(1):60-68.
    [16]Otsu N.A threshold selection method from gray-level histograms[J].IEEE Trans Syst Man Cybern, 1979, 9:62-66.
    [17]Weiss P, Obadia L, Magne D, et al.Synchrotron X-ray microtomography(on a micron scale)provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials[J].Biomaterials, 2003, 24(25):4591-4601.
    [18]Mayo SC, Miller PR, Wilkins SW, et al.Quantitative X-ray projection microscopy:phase-contrast and multi-spectral imaging[J].J Microsc, 2002, 207(Pt 2):79-96.
    [19]Soardi CM, Clozza E, Turco G, et al.Microradiography and microcomputed tomography comparative analysis in human bone cores harvested after maxillary sinus augmentation:a pilot study[J].Clin Oral Implants Res, 2014, 25(10):1161-1168.
    [20]Peric M, Dumic-Cule I, Grcevic D, et al.The rational use of animal models in the evaluation of novel bone regenerative therapies[J].Bone, 2015, 70:73-86.
    [21]Kostopoulos L,Karring T.Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer[J].Clin Oral Implants Res, 1994, 5(2):66-74.
    [22]Giannobile WV, Nevins M.Osteology guidelines for oral and maxillofacial regeneration:preclinical models for translational research[M].London:Quintessence, 2011.
    [23]Jung RE, Fenner N, Hammerle CHF,et al.Long-term outcome of implants placed with guided bone regeneration(GBR)using resorbable and non-resorbable membranes after 12-14 years[J].Clin Oral Implants Res, 2013, 24(10):1065-1073.
    [24]Galindo-Moreno P, Hemandez-Cort6s P, Mesa F, et al.Slow resorption of anorganic bovine bone by osteoclasts in maxillary sinus augmentation[J].Clin Implant Dent Relat Res, 2013, 15(6):858-866.
    [25]Perelman-Karmon M, Kozlovsky A, Liloy R, et al.Socket site preservation using bovine bone mineral with and without a bioresorbable collagen membrane[J].Int J Periodontics Restorative Dent, 2012, 32(4):459-465.
    [26]Cooper GM, Mooney MP, Gosain AK, et al.Testing the critical size in calvarial bone defects:revisiting the concept of a criticalsize defect[J].Plast Reconstr Surg, 2010, 125(6):1685-1692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700