Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure
  • 作者:Pavel ; Horky ; Sylvie ; Skalickova ; Lenka ; Urbankova ; Daria ; Baholet ; Silvia ; Kociova ; Zuzana ; Bytesnikova ; Eliska ; Kabourkova ; Zuzana ; Lackova ; Natalia ; Cernei ; Milica ; Gagic ; Vedran ; Milosavljevic ; Vendula ; Smolikova ; Eva ; Vaclavkova ; Pavel ; Nevrkla ; Pavel ; Knot ; Olga ; Krystofova ; David ; Hynek ; Pavel ; Kopel ; Jiri ; Skladanka ; Vojtech ; Adam ; Kristyna ; Smerkova
  • 英文作者:Pavel Horky;Sylvie Skalickova;Lenka Urbankova;Daria Baholet;Silvia Kociova;Zuzana Bytesnikova;Eliska Kabourkova;Zuzana Lackova;Natalia Cernei;Milica Gagic;Vedran Milosavljevic;Vendula Smolikova;Eva Vaclavkova;Pavel Nevrkla;Pavel Knot;Olga Krystofova;David Hynek;Pavel Kopel;Jiri Skladanka;Vojtech Adam;Kristyna Smerkova;Department of Animal Nutrition and Forage Production, Mendel University in Brno;Department of Chemistry and Biochemistry, Mendel University in Brno;Central European Institute of Technology,Brno University of Technology;Institute of Animal Science, Komenskeho 1239, CZ-517 41 Kostelec nad Orlici;Department of Animal Breeding, Mendel University in Brno;
  • 英文关键词:Aerobic bacteria;;Antibiotics;;Coliforms;;Nanomaterials;;Oxidative stress
  • 中文刊名:XMSW
  • 英文刊名:畜牧与生物技术杂志(英文版)
  • 机构:Department of Animal Nutrition and Forage Production, Mendel University in Brno;Department of Chemistry and Biochemistry, Mendel University in Brno;Central European Institute of Technology,Brno University of Technology;Institute of Animal Science, Komenskeho 1239, CZ-517 41 Kostelec nad Orlici;Department of Animal Breeding, Mendel University in Brno;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Animal Science and Biotechnology
  • 年:2019
  • 期:v.10
  • 基金:Financial support from ERDF “Multidisciplinary research to increase application potential of nanomaterials in agricultural practice”(No.CZ.02.1.01/0.0/0.0/16_025/0007314);; supported by NAZV QK1720349 “Nanoparticles zinc as an alternative to antibiotics in pigs”;; AF-IGA-2018-tym001 “Comparison of the impact of climate change on photosynthesis C3 and C4 plants cycles which are used in livestock feed”
  • 语种:英文;
  • 页:XMSW201902018
  • 页数:12
  • CN:02
  • ISSN:11-5967/S
  • 分类号:213-224
摘要
Background: Development of new nanomaterials that inhibit or kil bacteria is an important and timely research topic. For example, financial losses due to infectious diseases, such as diarrhea, are a major concern in livestock productions around the world. Antimicrobial nanoparticles(NPs) represent a promising alternative to antibiotics and may lower antibiotic use and consequently spread of antibiotic resistance traits among bacteria, including pathogens.Results: Four formulations of zinc nanoparticles(Zn A, Zn B, Zn C, and Zn D) based on phosphates with spherical(Zn A, Zn B)or irregular(Zn C, Zn D) morphology were prepared. The highest in vitro inhibitory effect of our NPs was observed against Staphylococcus aureus(inhibitory concentration values, IC_50, ranged from 0.5 to 1.6 mmol/L), fol owed by Escherichia coli(IC_500.8–1.5 mmol/L). In contrast, methicil in resistant S. aureus(IC_501.2–4.7 mmol/L) was least affected and this was similar to inhibitory patterns of commercial Zn O-based NPs and Zn O. After the successful in vitro testing, the in vivo study with rats based on dietary supplementation with zinc NPs was conducted. Four groups of rats were treated by 2,000 mg Zn/kg diet of Zn A, Zn B, Zn C, and Zn D, for comparison two groups were supplemented by 2,000 mg Zn/kg diet of Zn O-N and Zn O, and one group(control) was fed only by basal diet. The significantly higher(P < 0.05) Zn level in liver and kidney of al treated groups was found, nevertheless Zn NPs did not greatly influence antioxidant status of rats. However,the total aerobic and coliform bacterial population in rat feces significantly decreased(P < 0.05) in al zinc groups after 30 d of the treatment. Furthermore, when compared to the Zn O group, Zn A and Zn C nanoparticles reduced coliforms significantly more(P < 0.05).Conclusions: Our results demonstrate that phosphate-based zinc nanoparticles have the potential to act as antibiotic agents.
        Background: Development of new nanomaterials that inhibit or kil bacteria is an important and timely research topic. For example, financial losses due to infectious diseases, such as diarrhea, are a major concern in livestock productions around the world. Antimicrobial nanoparticles(NPs) represent a promising alternative to antibiotics and may lower antibiotic use and consequently spread of antibiotic resistance traits among bacteria, including pathogens.Results: Four formulations of zinc nanoparticles(Zn A, Zn B, Zn C, and Zn D) based on phosphates with spherical(Zn A, Zn B)or irregular(Zn C, Zn D) morphology were prepared. The highest in vitro inhibitory effect of our NPs was observed against Staphylococcus aureus(inhibitory concentration values, IC_50, ranged from 0.5 to 1.6 mmol/L), fol owed by Escherichia coli(IC_500.8–1.5 mmol/L). In contrast, methicil in resistant S. aureus(IC_501.2–4.7 mmol/L) was least affected and this was similar to inhibitory patterns of commercial Zn O-based NPs and Zn O. After the successful in vitro testing, the in vivo study with rats based on dietary supplementation with zinc NPs was conducted. Four groups of rats were treated by 2,000 mg Zn/kg diet of Zn A, Zn B, Zn C, and Zn D, for comparison two groups were supplemented by 2,000 mg Zn/kg diet of Zn O-N and Zn O, and one group(control) was fed only by basal diet. The significantly higher(P < 0.05) Zn level in liver and kidney of al treated groups was found, nevertheless Zn NPs did not greatly influence antioxidant status of rats. However,the total aerobic and coliform bacterial population in rat feces significantly decreased(P < 0.05) in al zinc groups after 30 d of the treatment. Furthermore, when compared to the Zn O group, Zn A and Zn C nanoparticles reduced coliforms significantly more(P < 0.05).Conclusions: Our results demonstrate that phosphate-based zinc nanoparticles have the potential to act as antibiotic agents.
引文
1.Dapkekar A,Deshpande P,Oak MD,Paknikar KM,Rajwade JM.Zinc use efficiency is enhanced in wheat through nanofertilization.Sci Rep.2018;8:7.
    2.Hagedorn K,Li WY,Liang QJ,Dilger S,Noebels M,Wagner MR,et al.Catalytically doped semiconductors for chemical gas sensing:aerogel-like aluminum-containing zinc oxide materials prepared in the gas phase.Adv Funct Mater.2016;26(20):3424-37.
    3.Shaheen TI,El-Naggar ME,Abdelgawad AM,Hebeish A.Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics.Int J Biol Macromol.2016;83:426-32.
    4.Al-Naamani L,Dobretsov S,Dutta J.Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications.Innov Food Sci Emerg Technol.2016;38:231-7.
    5.Javed MS,Chen J,Chen L,Xi Y,Zhang CL,Wan BY,et al.Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage.J Mater Chem A.2016;4(2):667-74.
    6.Wang C,Zhang LG,Su WP,Ying ZX,He JT,Zhang LL,et al.Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate:effects on growth,serum enzymes,zinc deposition,intestinal morphology and epithelial barrier in weaned piglets.PLoS One.2017;12(7):14.
    7.Kaviyarasu K,Geetha N,Kanimozhi K,Magdalane CM,Sivaranjani S,Ayeshamariam A,et al.In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2nanocrystals:investigation of bio-medical application by chemical method.Mater Sci Eng C-Mater Biol Appl.2017;74:325-33.
    8.Shankar S,Rhim JW.Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads.Carbohydr Polym.2017;163:137-45.
    9.Oun AA,Rhim JW.Carrageenan-based hydrogels and films:effect of ZnOand CuO nanoparticles on the physical,mechanical,and antimicrobial properties.Food Hydrocoll.2017;67:45-53.
    10.Premanathan M,Karthikeyan K,Jeyasubramanian K,Manivannan G.Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation.Nanomed-Nanotechnol Biol Med.2011;7(2):184-92.
    11.Xie YP,He YP,Irwin PL,Jin T,Shi XM.Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.Appl Environ Microbiol.2011;77(7):2325-31.
    12.Alves MM,Bouchami O,Tavares A,Cordoba L,Santos CF,Miragaia M,et al.New insights into antibiofilm effect of a nanosized ZnO coating against the pathogenic methicillin resistant Staphylococcus aureus.ACS Appl Mater Interfaces.2017;9(34):28157-67.
    13.Hameed ASH,Karthikeyan C,Ahamed AP,Thajuddin N,Alharbi NS,Alharbi SA,et al.In vitro antibacterial activity of ZnO and Nd doped ZnOnanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae.Sci Rep.2016;6:11.
    14.Chen CW,Hsu CY,Lai SM,Syu WJ,Wang TY,Lai PS.Metal nanobullets for multidrug resistant bacteria and biofilms.Adv Drug Deliv Rev.2014;78:88-104.
    15.Abu Ali H,Shalash AM,Akkawi M,Jaber S.Synthesis,characterization and in vitro biological activity of new zinc(II)complexes of the nonsteroidal antiinflammatory drug sulindac and nitrogen-donor ligands.Appl Organomet Chem.2017;31(11):14.
    16.Jiang YH,Zhang LL,Wen DS,Ding YL.Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E.Coli.Mater Sci Eng C-Mater Biol Appl.2016;69:1361-6.
    17.Cai Q,Gao YY,Gao TY,Lan S,Simalou O,Zhou XY,et al.Insight into biological effects of zinc oxide nanoflowers on bacteria:why morphology matters.ACS Appl Mater Interfaces.2016;8(16):10109-20.
    18.Jain A,Bhargava R,Poddar P.Probing interaction of gram-positive and Gram-negative bacterial cells with ZnO nanorods.Mater Sci Eng C-Mater Biol Appl.2013;33(3):1247-53.
    19.Heim J,Felder E,Tahir MN,Kaltbeitzel A,Heinrich UR,Brochhausen C,et al.Genotoxic effects of zinc oxide nanoparticles.Nanoscale.2015;7(19):8931-8.
    20.Bondarenko O,Juganson K,Ivask A,Kasemets K,Mortimer M,Kahru A.Toxicity of ag,CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro:a critical review.Arch Toxicol.2013;87(7):1181-200.
    21.Xia T,Kovochich M,Liong M,Madler L,Gilbert B,Shi HB,et al.Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties.ACS Nano.2008;2(10):2121-34.
    22.Jiao LF,Lin FH,Cao ST,Wang CC,Wu H,Shu MA,et al.Preparation,characterization,antimicrobial and cytotoxicity studies of copper/zincloaded montmorillonite.J Anim Sci Biotechnol.2017;8:27.
    23.Pati R,Sahu R,Panda J,Sonawane A.Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages.Sci Rep.2016;6:24184.
    24.Sirelkhatim A,Mahmud S,Seeni A,Kaus NHM,Ann LC,Bakhori SKM,et al.Review on zinc oxide nanoparticles:antibacterial activity and toxicity mechanism.Nano-Micro Lett.2015;7(3):219-42.
    25.Raghupathi KR,Koodali RT,Manna AC.Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles.Langmuir.2011;27(7):4020-8.
    26.Gupta A,Srivastava R.Zinc oxide nanoleaves:a scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application.Ultrason Sonochem.2018;41:47-58.
    27.Yu HY,Chen GY,Wang YB,Yao JM.A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity.Cellulose.2015;22(1):261-73.
    28.Mishra PK,Mishra H,Ekielski A,Talegaonkar S,Vaidya B.Zinc oxide nanoparticles:a promising nanomaterial for biomedical applications.Drug Discov Today.2017;22(12):1825-34.
    29.Dastjerdie EV,Oskoui M,Sayanjali E,Tabatabaei FS.In-vitro comparison of the antimicrobial properties of glass ionomer cements with zinc phosphate cements.Iran J Pharm Res.2012;11(1):77-82.
    30.Chou AHK,LeGeros RZ,Chen Z,Li YH.Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes.Implant Dent.2007;16(1):89-100.
    31.Roguska A,Belcarz A,Pisarek M,Ginalska G,Lewandowska M.TiO2nanotube composite layers as delivery system for ZnO and Ag nanoparticles-An unexpected overdose effect decreasing their antibacterial efficacy.Mater Sci Eng C-Mater Biol Appl.2015;51:158-66.
    32.Gielda LM,DiRita VJ.Zinc Competition among the Intestinal Microbiota.mBio.2012;3(4):00171-12.
    33.Lopez CA,Skaar EP.The impact of dietary transition metals on host-bacterial interactions.Cell Host Microbe.2018;23(6):737-48.
    34.Vijayalakshmi K,Sivaraj D.Enhanced antibacterial activity of Cr doped Zn Onanorods synthesized using microwave processing.RSC Adv.2015;5(84):68461-9.
    35.Winterhalter M,Ceccarelli M.Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria.Eur J Pharm Biopharm.2015;95:63-7.
    36.Shore AC,Coleman DC.Staphylococcal cassette chromosome mec:recent advances and new insights.Int J Med Microbiol.2013;303(6-7):350-9.
    37.Stefani S,Chung DR,Lindsay JA,Friedrich AW,Kearns AM,Westh H,et al.Meticillin-resistant Staphylococcus aureus(MRSA):global epidemiology and harmonisation of typing methods.Int J Antimicrob Agents.2012;39(4):273-82.
    38.Cavaco LM,Hasman H,Aarestrup FM.Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance.Vet Microbiol.2011;150(3-4):344-8.
    39.Hau SJ,Frana T,Sun J,Davies PR,Nicholson TL.Zinc resistance within swine-associated methicillin-resistant Staphylococcus aureus isolates in the United States is associated with multilocus sequence type lineage.Appl Environ Microbiol.2017;83(15):9.
    40.Argudin MA,Lauzat B,Kraushaar B,Alba P,Agerso Y,Cavaco L,et al.Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates.Vet Microbiol.2016;191:88-95.
    41.Olechnowicz J,Tinkov A,Skalny A,Suliburska J.Zinc status is associated with inflammation,oxidative stress,lipid,and glucose metabolism.J Physiol Sci.2018;68(1):19-31.
    42.Bondzio A,Pieper R,Gabler C,Weise C,Schulze P,Zentek J,et al.Feeding low or pharmacological concentrations of zinc oxide changes the hepatic proteome profiles in weaned piglets.PLoS One.2013;8(11):11.
    43.Baek M,Chung HE,Yu J,Lee JA,Kim TH,Oh JM,et al.Pharmacokinetics,tissue distribution,and excretion of zinc oxide nanoparticles.Int JNanomedicine.2012;7:3081-97.
    44.Paek HJ,Lee YJ,Chung HE,Yoo NH,Lee JA,Kim MK,et al.Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo.Nanoscale.2013;5(23):11416-27.
    45.Cho WS,Kang BC,Lee JK,Jeong J,Che JH,Seok SH.Comparative absorption,distribution,and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration.Part Fibre Toxicol.2013;10:9.
    46.Wang C,Lu JJ,Zhou L,Li J,Xu JM,Li WJ,et al.Effects of long-term exposure to zinc oxide nanoparticles on development,zinc metabolism and biodistribution of minerals(Zn,Fe,Cu,Mn)in mice.PLoS One.2016;11(10):14.
    47.Jemai H,Messaoudi I,Chaouch A,Kerkeni A.Protective effect of zinc supplementation on blood antioxidant defense system in rats exposed to cadmium.J Trace Elem in Med Bio.2007;21(4):269-73.
    48.Gu YH,Zhao Z.Significance of the changes occurring in the levels of interleukins,SOD and MDA in rat pulmonary tissue following exposure to different altitudes and exposure times.Exp Ther Med.2015;10(3):915-20.
    49.Liu JH,Ma X,Xu YY,Tang H,Yang ST,Yang YF,et al.Low toxicity and accumulation of zinc oxide nanoparticles in mice after 270-day consecutive dietary supplementation.Toxicol Res.2017;6(2):134-43.
    50.Pati R,Das I,Mehta RK,Sahu R,Sonawane A.Zinc-oxide nanoparticles exhibit genotoxic,clastogenic,cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice.Toxicol Sci.2016;150(2):454-72.
    51.Syama S,Sreekanth PJ,Varma HK,Mohanan PV.Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells.Toxicol Mech Methods.2014;24(9):644-53.
    52.Arakha M,Roy J,Nayak PS,Mallick B,Jha S.Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagymediated apoptotic cell death.Free Radic Biol Med.2017;110:42-53.
    53.Hou J,Wu YZ,Li X,Wei BB,Li SG,Wang XK.Toxic effects of different types of zinc oxide nanoparticles on algae,plants,invertebrates,vertebrates and microorganisms.Chemosphere.2018;193:852-60.
    54.Shin YJ,Lee WM,Kwak JI,An YJ.Dissolution of zinc oxide nanoparticles in exposure media of algae,daphnia,and fish embryos for nanotoxicological testing.Chem Ecol.2018;34(3):229-40.
    55.Brun NR,Lenz M,Wehrli B,Fent K.Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleutheroembryos:importance of zinc ions.Sci Total Environ.2014;476:657-66.
    56.Jihen E,Imed M,Fatima H,Abdelhamid K.Protective effects of selenium(Se)and zinc(Zn)on cadmium(Cd)toxicity in the liver and kidney of the rat:histology and cd accumulation.Food Chem Toxicol.2008;46(11):3522-7.
    57.Chatzicharalampous C,Jeelani R,Mikhael S,Aldhaheri S,Najeemudin S,Morris RT,et al.Zinc:An essential metal for maintenance of female fertility.Fertil Steril.2018;109(3):E19.
    58.Kumar N,Krishnani KK,Kumar P,Singh NP.Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors.J Therm Biol.2017;70:61-8.
    59.Torabi F,Shafaroudi MM,Rezaei N.Combined protective effect of zinc oxide nanoparticles and melatonin on cyclophosphamide-induced toxicity in testicular histology and sperm parameters in adult Wistar rats.Int J Reprod Biomed.2017;15(7):403-12.
    60.Lee CM,Jeong HJ,Yun KN,Kim DW,Sohn MH,Lee JK,et al.Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure.Int J Nanomedicine.2012;7:3203-9.
    61.Pietroiusti A,Magrini A,Campagnolo L.New frontiers in nanotoxicology:gut microbiota/microbiome-mediated effects of engineered nanomaterials.Toxicol Appl Pharmacol.2016;299:90-5.
    62.Westmeier D,Hahlbrock A,Reinhardt C,Frohlich-Nowoisky J,Wessler S,Vallet C,et al.Nanomaterial-microbe cross-talk:physicochemical principles and(patho)biological consequences.Chem Soc Rev.2018;47(14):5312-37.
    63.Mercier-Bonin M,Despax B,Raynaud P,Houdeau E,Thomas M.Mucus and microbiota as emerging players in gut nanotoxicology:the example of dietary silver and titanium dioxide nanoparticles.Crit Rev Food Sci Nutr.2018;58(6):1023-32.
    64.Qiu KY,Durham PG,Anselmo AC.Inorganic nanoparticles and the microbiome.Nano Res.2018;11(10):4936-54.
    65.Yausheva E,Miroshnikov S,Sizova E.Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts.Environ Sci Pollut Res.2018;25(18):18109-20.
    66.Feng YN,Min LJ,Zhang WD,Liu J,Hou ZM,Chu MQ,et al.Zinc oxide nanoparticles influence microflora in ileal digesta and correlate well with blood metabolites.Front Microbiol.2017;8:10.
    67.Li JQ,Chen HQ,Wang B,Cai CX,Yang X,Chai ZF,et al.Zn O nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling.Sci Rep.2017;7:11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700