机载BDS接收机的重捕时间和定位精度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reacquisition time and positioning accuracy of airborne BDS receiver
  • 作者:倪育德 ; 马圆晨 ; 张心一 ; 刘鹏
  • 英文作者:NI Yude;MA Yuanchen;ZHANG Xinyi;LIU Peng;College of Electronic Information and Automation,CAUC;
  • 关键词:重捕时间 ; 定位精度 ; 机载BDS接收机 ; 动态环境
  • 英文关键词:reacquisition time;;positioning accuracy;;airborne BDS receiver;;dynamicenvironment
  • 中文刊名:ZGMH
  • 英文刊名:Journal of Civil Aviation University of China
  • 机构:中国民航大学电子信息与自动化学院;
  • 出版日期:2019-02-15
  • 出版单位:中国民航大学学报
  • 年:2019
  • 期:v.37;No.197
  • 基金:中国民航局安全能力建设项目(AADSA0007);; 中央高校基本科研业务费专项(ZXH2011C013)
  • 语种:中文;
  • 页:ZGMH201901013
  • 页数:6
  • CN:01
  • ISSN:12-1396/U
  • 分类号:3-8
摘要
民用航空是北斗卫星导航系统(BDS)机载接收机的最高端用户,对机载BDS接收机的性能有着更为苛刻的要求。对动态环境下机载BDS接收机的重捕时间和定位精度这两项性能指标进行仿真研究,分析影响这两项性能指标的参数及其与各参数之间的关系;结合实际飞行数据,且在高速度和高加速度环境下对机载BDS接收机的重捕时间和定位精度进行仿真。结果表明:机载BDS接收机的重捕时间除了受载噪比、失锁时间、模块相关器数目等参数影响外,还会随着飞机运动速度的增大而增加;定位精度的主要影响因素包括环路噪声带宽、载噪比、预检测积分时间和飞机运动加速度等,其中飞机运动加速度的增大使得机载BDS接收机的定位精度降低。
        As the top end user of airborne BDS receiver, civil aviation requires more exacting performance. Performance indicators of airborne BDS receiver affected by dynamic environments include reacquisition time, positioning accuracy and so on. In dynamic environment, the above two performance indicators are studied and simulated,analyzing affecting parameters of them, as well as the relationship between the two indicators and relative parameters. Under high speed and high acceleration environment, the reacquisition time and positioning accuracy of airborne BDS receiver are analyzed and simulated based on actual flight data. Results show that the reacquisition time of airborne BDS receiver is affected by parameters such as carrier-to-noise ratio and lockout time, and increases with the increment of aircraft speed. Influencing factors of positioning accuracy include loop noise bandwidth, carrier-to-noise ratio and acceleration, among which the increment of aircraft acceleration causes degrading positioning accuracy ofairborne BDS receiver.
引文
[1] RTCA. Minimum operational performance standards for airborne supplemental navigation equipment using global positioning system(GPS):DO-208[S]. RTCA, 1991.
    [2] RTCA. Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment:DO-229C[S].RTCA, 2001.
    [3] KAPLAN E D, HEGARTY C J. Understanding GPS:Principles and Applications[M]. 2nd Edition. Norwood:Artech House Press, 2006.
    [4] LOZOW J B. Analysis of direct P(Y)-code acquisition[J]. Navigation,1997, 44(1):89-98.
    [5]定时航班跟踪[EB/OL].[2017-04-17]. https://zh.flightaware.com/live/flight/CSC8568/history/20170414/0920Z/ZBTJ/ZYHB/tracklog.
    [6] BRAASCH M S, VAN DIERENDONCK A J. GPS receiver architectures and measurements[J]. Proceedings of the IEEE, 1999, 87(1):48-64.
    [7]吴琼,寇艳红,郑兴平.高动态GPS接收机环路跟踪技术研究[J].测控遥感与导航定位, 2008, 38(12):32-36.
    [8] BETZ J W, KOLODZIEJSKI K R. Extended theory of early-late code tracking for a bandlimited GPS receiver[J]. Navigation, 2000, 47(3):211-226.
    [9] JWO D J. Optimization and sensitivity analysis of GPS receiver tracking loops in dynamic environments[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(4):241-250.
    [10]柯腾伦.北斗接收机关键技术研究[D].西安:西安电子科技大学,2013.
    [11]伍蔡伦,陆明泉,冯振明.高动态GNSS接收机载波环性能评估与仿真[J].现代雷达, 2011, 33(7):64-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700