丁醇的生物炼制及研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biorefinery and research progress of butanol production
  • 作者:肖敏 ; 吴又多 ; 薛闯
  • 英文作者:XIAO Min;WU Youduo;XUE Chuang;School of Life Science and Biotechnology,Dalian University of Technology;
  • 关键词:生物丁醇 ; 预处理 ; 丙酮-丁醇-乙醇发酵 ; 菌株改造 ; 丁醇分离 ; 生物能源
  • 英文关键词:biobutanol;;pretreatment;;ABE fermentation;;strain engineering;;butanol recovery;;bioenergy
  • 中文刊名:SWJG
  • 英文刊名:Chinese Journal of Bioprocess Engineering
  • 机构:大连理工大学生命科学与技术学院;
  • 出版日期:2019-01-15
  • 出版单位:生物加工过程
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金(21576045、21878035);; 辽宁省高等学校创新人才支持计划(LR2017005);; 大连市青年科技之星(2017RQ003);; 大连市科技创新基金(2018J12SN074);; 大连理工大学优秀青年人才科研专项(DUT16YQ103);大连理工大学“星海学者”人才培育计划
  • 语种:中文;
  • 页:SWJG201901010
  • 页数:12
  • CN:01
  • ISSN:32-1706/Q
  • 分类号:66-77
摘要
丁醇因其优越的燃烧性能成为目前最具研发前景的生物燃料之一,它通常以可再生资源为原料,经丙酮-丁醇-乙醇(ABE)发酵获得。尽管ABE发酵曾是最古老的大规模发酵工艺之一,但由于原料成本高,发酵液中丁醇浓度低以及较高浓度的丙酮、乙醇和有机酸等副产物积累等问题,导致丁醇的生物炼制仍然不具有经济竞争力。本文中,笔者从原料选择、原料预处理、纤维素酶酶解和丁醇发酵4个方面介绍丁醇生物炼制的基本流程以及相关研究,以进一步分析丁醇生产的主要瓶颈,并从生产菌株改造和丁醇分离2个方面总结近年来的相关研究进展。最后,讨论了未来丁醇生产研究的重点并指出菌株改造的方向。
        Butanol is regarded as one of the most promising biofuels due to its superior properties.Butanol is typically produced by acetone-butanol-ethanol( ABE) fermentation from renewable resources. Although ABE fermentation is one of the oldest large-scale fermentative processes,biorefining of butanol is limited to high cost of raw materials,low butanol production and yield,as well as considerable by-products of acetone,ethanol and acids,making ABE fermentation not economically competitive.This paper reviews the biorefinery route of butanol,including feedstocks selection,feedstocks pretreatments,enzyme hydrolysis and butanol fermentation. The article further analyzes the main bottlenecks in butanol production and summarizes the latest progress on the strain engineering and butanol recovery in recent years.At last,the review emphasizes on the perspective of butanol production as well as research direction of strain engineering.
引文
[1] TOLLEFSON J. Energy:not your father's biofuels[J]. Nature,2008,451:880-883.
    [2] XUE C,ZHAO J B,CHEN L J,et al.Integrated butanol recovery for an advanced biofuel:current state and prospects[J]. Appl Microbiol Biotechnol,2014,98(8):3463-3474.
    [3] DERRE P.Fermentative butanol production:bulk chemical and biofuel[J].Ann N Y Acad Sci,2008,1125:353-362.
    [4] NI Y,SUN Z. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China[J]. Appl Microbiol Biotechnol,2009,83(3):415-423.
    [5] SCHASCHKE C,FLETCHER I,GLEN N. Density andviscosity measurement of diesel fuels at combined high pressure and elevated temperature[J].Processes,2013,1(2):30-48.
    [6] WANG F,WU J,LIU Z.Surface tensions of mixtures of diesel oil or gasoline and dimethoxymethane,dimethyl carbonate,or ethanol[J].Energy Fuel,2006,20(6):2471-2474.
    [7] ZHANG Q,YAO M,ZHENG Z,et al. Experimental study of nbutanol addition on performance and emissions with diesel low temperature combustion[J].Energy,2012,47(1):515-521.
    [8] NIGAM P S,SINGH A. Production of liquid biofuels from renewable resources[J]. Prog Energy Combust,2011,37(1):52-68.
    [9] DRRE P. Biobutanol:an attractive biofuel[J]. Biotechnol J,2007,2(12):1525-1534.
    [10]陈丽杰,辛程勋,邓攀,等.丙酮丁醇梭菌发酵菊芋汁生产丁醇[J].生物工程学报,2010,26(7):991-996.
    [11] MARCHAL R,BLANCHET D,VANDECASTEELE J P.Industrial optimization of acetone-butanol fermentation:a study of the utilization of Jerusalem artichokes[J].Appl Microbiol Biotechnol,1985,23(2):92-98.
    [12] LI S,GUO Y,LU F,et al. High-level butanol production from cassava starch by a newly isolated Clostridium acetobutylicum[J].Appl Microbiol Biotechnol,2015,177(4):831-841.
    [13] LUO W,ZHAO Z,PAN H,et al.Feasibility of butanol production from wheat starch wastewater by Clostridium acetobutylicum[J].Energy,2018,154:240-248.
    [14]孙珊,汪维云,倪晔,等.一株拜氏梭菌利用甘蔗废糖蜜发酵生产丙酮丁醇[J].生物加工过程,2012,10(3):6-11.
    [15]范俊辉,冯文亮,邸胜苗,等.利用甜菜糖蜜补料发酵生产丁醇[J].生物加工过程,2010,8(6):6-9.
    [16]彭万峰,熊莲,陈新德,等.甘蔗汁发酵生产丙酮丁醇的研究[J].太阳能学报,2010,31(8):937-941.
    [17] WECHGAMA K,LAOPAIBOON L,LAOPAIBOON P.Biobutanol production from agricultural raw materials by Clostridium spp[J].Chiang Mai J Sci,2017,44(2):394-405.
    [18] WECHGAMA K, LAOPAIBOON L, LAOPAIBOON P.Enhancement of batch butanol production from sugarcane molasses using nitrogen supplementation integrated with gas stripping for product recovery[J]. Ind Crops Prod,2017,95:216-226.
    [19]彭春艳,罗怀良,孔静.中国作物秸秆资源量估算与利用状况研究进展[J].中国农业资源与区划,2014(3):14-20.
    [20] FEHER A,FEHER C,ROZBACH M,et al.Combined approaches to xylose production from corn stover by dilute acid hydrolysis[J].Chem Biochem Eng Q,2017,31(1):77-87.
    [21] ZU S,LI W Z,ZHANG M,et al. Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime[J].Bioresour Technol,2014,152(3):64-70.
    [22] ZHONG C,LAU M W,BALAN V,et al.Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw[J].Appl Microbiol Biotechnol,2009,84(4):667-676.
    [23] HSU T C,GUO G L,CHEN W H,et al. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis[J].Bioresour Technol,2010,101(13):4907-4913.
    [24] TOQUERO C,BOLADO S. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw:influence of inhibitors and washing[J].Bioresour Technol,2014,157(2):68-76.
    [25] KAMM B,LEISS S,SCHOENICKE P,et al. Biorefining of lignocellulosic feedstock by a modified ammonia fiber expansion pretreatment and enzymatic hydrolysis for production of fermentable sugars[J].ChemSusChem,2017,10(1):48-52.
    [26] MARINOV B.Full dynamic reactions in the basic shaft bearings of big band saw machines[J]. J Theor Appl Mech Pol,2013,43(1):3-18.
    [27] ZHU J Y,PAN X J. Woody biomass pretreatment for cellulosic ethanol production:technology and energy consumption evaluation[J].Bioresour Technol,2010,101(13):4992-5002.
    [28] RODOLFI L,CHINI ZITTELLI G,BASSI N,et al.Microalgae for oil:strain selection,induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnol Bioeng,2009,102(1):100-112.
    [29] RAHEEM A,AZLINA W W,YAP Y T,et al. Thermochemical conversion of microalgal biomass for biofuel production[J].Renew Sustain Energy Rev,2015,49:990-999.
    [30] PARK J H,HONG J Y,JANG H C,et al.Use of Gelidium amansii as a promising resource for bioethanol:a practical approach for continuous dilute-acid hydrolysis and fermentation[J]. Bioresour Technol,2012,108(2):83-88.
    [31] POTTS T,DU J,PAUL M,et al.The production of butanol from Jamaica bay macro algae[J].Environ Prog Sustain,2012,31(1):29-36.
    [32] DEMIRBAS A. Bioethanol from cellulosic materials:a renewable motor fuel from biomass[J]. Energy Source,2005,27(4):327-337.
    [33]林海龙.木质纤维素生物炼制的研究进展[J].生物加工过程,2017,15(6):44-54.
    [34] KURAKAKE M,IDE N,KOMAKI T.Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper[J].Curr Microbiol,2007,54(6):424-428.
    [35] LEE J W,GWAK K S,PARK J Y,et al.Biological pretreatment of softwood Pinus densiflora by three white rot fungi[J].J Microbiol,2007,45(6):485-491.
    [36] SINGH P,SUMAN A,TIWARI P,et al.Biological pretreatment of sugarcane trash for its conversion to fermentable sugars[J].World J Microbiol Biotechnol,2008,24(5):667-673.
    [37] ZHANG X,YU H,HUANG H,et al. Evaluation of biological pretreatment with white rot fungi for the,enzymatic hydrolysis of bamboo culms[J].Int Biodeter Biodegr,2007,60(3):159-164.
    [38] ZHANG X,XU C,WANG H. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis[J]. J Biosci Bioeng,2007,104(2):149-151.
    [39] TAHERZADEH M J,KARIMI K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review[J].Int J Mol Sci,2008,9(9):1621-1651.
    [40] ZHANG Q,BENOIT M,VIGIER K D O,et al. Pretreatment of microcrystalline cellulose by ultrasounds:effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose[J].Green Chem,2013,15(4):963-969.
    [41] MA H,LIU W W,CHEN X,et al. Enhanced enzymatic saccharification of rice straw by microwave pretreatment[J].Bioresour Technol,2009,100(3):1279-1284.
    [42] CAO X,PENG X,SUN S,et al. Hydrothermal conversion of bamboo:identification and distribution of the components in solid residue,water-soluble and acetone-soluble fractions[J]. J Agric Food Chem,2014,62(51):12360-12365.
    [43] SUN S,CAO X,SUN S,et al.Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation[J].Biotechnol Biofuels,2014,7(1):116.
    [44] MIURA T,LEE S H,INOUE S,et al. Improvement of enzymatic saccharification of sugarcane bagasse by dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling[J].Bioresour Technol,2012,105(2):95-99.
    [45] LU X,ZHANG Y,ANGELIDAKI I. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol:focusing on pretreatment at high solids content[J].Bioresour Technol,2009,100(12):3048-3053.
    [46] HORN S J,NGUYEN Q D,WESTERENG B,et al. Screening of steam explosion conditions for glucose production from nonimpregnated wheat straw[J]. Biomass Bioenerg,2011,35(12):4879-4886.
    [47] ALVIRA P,TOMAS-PEJO E,BALLESTEROS M,et al.Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review[J]. Bioresour Technol,2010,101(13):4851-4861.
    [48] LEE J M,JAMEEL H,VENDITTI R A. A comparison of the autohydrolysis and ammonia fiber explosion(AFEX)pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass[J].Bioresour Technol,2010,101(14):5449-5458.
    [49] DESHAVATH N N,MOHAN M,VEERANKI V D,et al. Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production[J]. 3 Biotech,2017,7(2):139.
    [50] CARVALHEIRO F,DUARTE L C,GIRIO F M. Hemicellulose biorefineries:a review on biomass pretreatments[J].J Sci Ind Res India,2008,67(11):849-864.
    [51] KIM S,HOLTZAPPLE M T. Lime pretreatment and enzymatic hydrolysis of corn stover[J]. Bioresour Technol,2005,96(18):1994-2006.
    [52] CHENG Y S,ZHENG Y,YU C W,et al.Evaluation of high solids alkaline pretreatment of rice straw[J]. Appl Biochem Biotech,2010,162(6):1768-1784.
    [53] KIM T H,GUPTA R,LEE Y Y. Pretreatment of biomass by aqueous ammonia for bioethanol production[J]. Method Mol B,2009,581(1):79-91.
    [54] PAN X,XIE D,KANG K Y,et al. Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates[J].Appl Biochem Biotech,2007,137:367-377.
    [55] PAN X,XIE D,YU R W,et al. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process[J].Biotechnol Bioeng,2008,101(1):39-48.
    [56] CHUM H L,JOHNSON D K,BLACK S,et al. Organosolv pretreatment for enzymatic hydrolysis of poplars:I. enzyme hydrolysis of cellulosic residues[J]. Biotechnol Bioeng,1988,31(7):643-649.
    [57] TERAMOTO Y,LEE S H,ENDO T. Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking[J]. Bioresour Technol,2008,99(18):8856-8863.
    [58] ARAQUE E,PARRA C,FREER J,et al.Evaluation of organosolv pretreatment for the conversion of Pinus radiata D.Don to ethanol[J].Enzyme Microb Tech,2008,43(2):214-219.
    [59] SUN F,CHEN H.Comparison of atmospheric aqueous glycerol and steam explosion pretreatments of wheat straw for enhanced enzymatic hydrolysis[J]. J Chem Technol Biotechnol,2008,83(5):707-714.
    [60] ZHAO X,CHENG K,LIU D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Appl Microbiol Biotechnol,2009,82(5):815-827.
    [61] PARK N,KIM H Y,KOO B W,et al. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine(Pinus rigida)[J]. Bioresour Technol,2010,101(18):7046-7053.
    [62] MIKKOLA J P,KIRILIN A,TUUF J C,et al. Ultrasound enhancement of cellulose processing in ionic liquids:from dissolution towards functionalization[J]. Green Chem,2007,9(11):1229-1237.
    [63] ROGERS R D,HOLBREY J D,SPEAR S K,et al.Ionic liquids as green solvents:engineering bioactive cellulose materials[J].Abstr Pap Am Chem Soc,2004,227:198-CELL.
    [64] ZHU S. Use of ionic liquids for the efficient utilization of lignocellulosic materials[J].J Chem Technol Biotechnol,2008,83(6):777-779.
    [65] CAO X,PENG X,SUN S,et al.Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid[J]. Carbohydr Polym,2014,111:400-403.
    [66] TAHA M,FODA M,SHAHSAVARI E,et al. Commercial feasibility of lignocellulose biodegradation:possibilities and challenges[J].Curr Opin Biotech,2016,38:190-197.
    [67] NIGAM P S. Microbial enzymes with special characteristics for biotechnological applications[J]. Biomolecules,2013,3(3):597-611.
    [68] LIU H,ZHU J Y,FU S Y.Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose[J]. J Agric Food Chem,2010,58(12):7233-7238.
    [69] KRISTENSEN J B,BORJESSON J,BRUUN M H,et al. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose[J]. Enzyme Microb Technol,2007,40(4):888-895.
    [70] TABKA M G,HERPOEL-GIMBERT I,MONOD F,et al.Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment[J].Enzyme Microb Technol,2006,39(4):897-902.
    [71] ERIKSSON T,BORJESSON J,TJERNELD F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose[J].Enzyme Microb Technol,2002,31(3):353-364.
    [72] SEWALT V J H,GLASSER W G,BEAUCHEMIN K A. Lignin impact on fiber degradation:3. reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives[J].J Agric Food Chem,1997,45(5):1823-1828.
    [73] MUSSATTO S I,ROBERTO I C.Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes:a review[J].Bioresour Technol,2004,93(1):1-10.
    [74] ZHU J,YONG Q,XU Y,et al. Detoxification of corn stoverprehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776[J]. Bioresour Technol,2011,102(2):1663-1668.
    [75] WICKRAMASINGHE S R,GRZENIA D L.Adsorptive membranes and resins for acetic acid removal from biomass hydrolysates[J].Desalination,2008,234(1/2/3):144-151.
    [76] CHANDEL A K,KAPOOR R K,SINGH A,et al.Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501[J]. Bioresour Technol,2007,98(10):1947-1950.
    [77] GRZENIA D L,SCHELL D J,WICKRAMASINGHE S R.Membrane extraction for detoxification of biomass hydrolysates[J].Bioresour Technol,2012,111(5):248-254.
    [78] LIU K,ATIYEH H K,PARDO-PLANAS O,et al. Process development for biological production of butanol from eastern redcedar[J].Bioresour Technol,2015,176:88-97.
    [79] VANZYL C,PRIOR B A,DUPREEZ J C. Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis[J].Appl Biochem Biotech,1988,17(1/2/3):357-369.
    [80] MARTINEZ A,RODRIGUEZ M E,YORK S W,et al. Effects of Ca(OH)2treatments("overliming")on the composition and toxicity of bagasse hemicellulose hydrolysates[J]. Biotechnol Bioeng,2000,69(5):526-536.
    [81] MU X,SUN W,LIU C,et al. Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii[J].Biotechnol Lett,2011,33(8):1587-1591.
    [82] MOROZOVA T,SEMYONOV S. Biological detoxification of lignocellulosic hydrolysates for improved biobutanol production[J].Key Eng Mat,2016,683:525-530.
    [83] QURESHI N,SAHA B C,DIEN B,et al.Production of butanol(a biofuel)from agricultural residues:part I. use of barley straw hydrolysate[J].Biomass Bioenergy,2010,34(4):559-565.
    [84] GAUSS W F,SUZUKI S,TAKAGI M.Manufacture of alcohol from cellulosic materials using plural ferments:US 3990944[P].1976-11-09.
    [85] OHGREN K,BURA R,LESNICKI G,et al.A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover[J].Process Biochem,2007,42(5):834-839.
    [86] IBRAHIM M F,ABD-AZIZ S,YUSOFF M E M,et al.Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel[J].Renew Energ,2015,77:447-455.
    [87] DONG J J,DING J C,ZHANG Y,et al. Simultaneous saccharification and fermentation of dilute alkaline-pretreated corn stover for enhanced butanol production by Clostridium saccharobutylicum DSM 13864[J]. FEMS Microbiol Lett,2016,363(4).
    [88] SASAKI C,KUSHIKI Y,ASADA C,et al. Acetone-butanolethanol production by separate hydrolysis and fermentation(SHF)and simultaneous saccharification and fermentation(SSF)methods using acorns and wood chips of Quercus acutissima as a carbon source[J].Ind Crops Prod,2014,62:286-292.
    [89] QURESHI N,SINGH V,LIU S,et al. Process integration for simultaneous saccharification, fermentation, and recovery(SSFR):production of butanol from corn stover using Clostridium beijerinckii P260[J].Bioresour Technol,2014,154(2):222-228.
    [90] GUAN W,SHI S,BLERSCH D. Effects of Tween 80 on fermentative butanol production from alkali-pretreated switch grass[J].Biochem Eng J,2018,135:61-70.
    [91] JAFARI Y,KARIMI K,AMIRI H.Efficient bioconversion of whole sweet sorghum plant to acetone,butanol,and ethanol improved by acetone delignification[J].J Clean Prod,2017,166:1428-1437.
    [92] QURESHI N,COTTA M A,SAHA B C. Bioconversion of barley straw and corn stover to butanol(a biofuel)in integrated fermentation and simultaneous product recovery bioreactors[J].Food Bioprod Process,2014,92(3):298-308.
    [93] EZEJI T C,QURESHI N,BLASCHEK H P. Production of acetone,butanol and ethanol by Clostridium beijerinckii BA101and in situ recovery by gas stripping[J]. World J Microbiol Biotechnol,2003,19(6):595-603.
    [94] LI H G,LUO W,GU Q Y,et al. Acetone,butanol,and ethand production from cane molasses using Clostridium beiierinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction[J]. Bioresour Technol,2013,137:254-260.
    [95] ZHANG J,YU L,LIN M,et al.n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2[J].Bioresour Technol,2017,233:51-57.
    [96] GU Y,LI J,ZHANG L,et al.Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli[J]. J Biotechnol,2009,143(4):284-287.
    [97] XIAO H,GU Y,NING Y,et al. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvatedependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose,cylose,and arabinose[J]. Appl Environ Microbiol, 2011, 77(22):7886-7895.
    [98] ALSAKER K V,PAREDES C,PAPOUTSAKIS E T. Metabolite stress and tolerance in the production of biofuels and chemicals:gene-expression-based systems analysis of butanol,butyrate,and acetate stresses in the anaerobe Clostridium acetobutylicum[J].Biotechnol Bioeng,2010,105(6):1131-1147.
    [99] ALSAKER K V,SPITZER T R,PAPOUTSAKIS E T.Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress[J].J Bacteriol,2004,186(7):1959-1971.
    [100] RUTHERFORD B J,DAHL R H,PRICE R E,et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli[J].Appl Environ Microbiol,2010,76(6):1935-1945.
    [101] TOMAS C A,BEAMISH J,PAPOUTSAKIS E T. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum[J].J Bacteriol,2004,186(7):2006-2018.
    [102] TOMAS C A,WELKER N E,PAPOUTSAKIS E T.Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance,prolonged metabolism,and changes in the cell's transcriptional program[J]. Appl Environ Microbiol,2003,69(8):4951-4965.
    [103] ZHU L J,DONG H J,ZHANG Y P,et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability[J].Metab Eng,2011,13(4):426-234.
    [104] SHEN C R,LIAO J C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways[J].Metab Eng,2008,10(6):312-320.
    [105] ATSUMI S,CANN A F,CONNOR M R,et al. Metabolic engineering of Escherichia coli for 1-butanol production[J].Metab Eng,2008,10(6):305-311.
    [106] STEEN E J,CHAN R,PRASAD N,et al.Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol[J].Microb Cell Fact,2008,7:36.
    [107] COOKSLEY C M,ZHANG Y,WANG H,et al. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanolethanol fermentation pathway[J]. Metab Eng,2012,14(6):630-641.
    [108] JIANG Y,XU C,DONG F,et al. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio[J]. Metab Eng,2009,11(4/5):284-291.
    [109] LEHMANN D,HOENICKE D,EHRENREICH A,et al.Modifying the product pattern of Clostridium acetobutylicum[J]. Appl Microbiol Biotechnol,2012,94(3):743-754.
    [110] LEHMANN D,RADOMSKI N,LUETKE-EVERSLOH T. New insights into the butyric acid metabolism of Clostridium acetobutylicum[J]. Appl Microbiol Biotechnol,2012,96(5):1325-1339.
    [111] JANG Y S,JIN Y L,LEE J,et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum[J].MBio,2012,3(5):429-493.
    [112] SHAO L,HU S,YANG Y,et al.Targeted gene disruption by use of a group II intron(targetron)vector in Clostridium acetobutylicum[J].Cell Res,2007,17(11):963-965.
    [113] LEVARIO T J,DAI M,YUAN W,et al. Rapid adsorption of alcohol biofuels by high surface area mesoporous carbons[J].Micropor Mesopor Mat,2012,148(1):107-114.
    [114] LIN X,WU J,FAN J,et al. Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin:studies of adsorption isotherms and kinetics simulation[J]. J Chem Technol Biotechnol,2012,87(7):924-931.
    [115] OUDSHOORN A,VAN DER WIELEN L A M,STRAATHOF A J J. Adsorption equilibria of bio-based butanol solutions using zeolite[J].Biochem Eng J,2009,48(1):99-103.
    [116] QURESHI N,HUGHES S,MADDOX I S,et al. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption[J].Bioproc Biosyst Eng,2005,27(4):215-222.
    [117] XUE C,LIU F,XU M,et al. Butanol production in acetonebutanol-ethanol fermentation with in situ product recovery by adsorption[J].Bioresour Technol,2016,219:158-168.
    [118] XUE C,ZHAO J,LU C,et al.High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping[J].Biotechnol Bioeng,2012,109(11):2746-2756.
    [119]李款,刘宏娟,张建安.气提耦合发酵技术在生物丁醇生产中的应用及研究进展[J].现代化工,2009(增刊2):22-26.
    [120] ROFFLER S R,BLANCH H W,WILKE C R.In situ recovery of butanol during fermentation[J].Bioproc Eng,1987,2(1):1-12.
    [121] LI Q,CAI H,HAO B,et al.Enhancing clostridial acetone-butanolethanol(ABE)production and improving fuel properties of ABEenriched biodiesel by extractive fermentation with biodiesel[J].Appl Biochem Biotechnol,2010,162(8):2381-2386.
    [122] BANKAR S B,SURVASE S A,SINGHAL R S,et al.Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B5313[J].Bioresour Technol,2012,106(2):110-116.
    [123] ISHIZAKI A,MICHIWAKI S,CRABBE E,et al. Extractive acetone-butanol-ethanol fermentation using methylated crude palm oil as extractant in batch culture of Clostridium saccharoperbutylacetonicum N1-4(ATCC 13564)[J]. J Biosci Bioeng,1999,87(3):352-356.
    [124] LI X,LI Z,ZHENG J,et al.Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824using cassava as substrate[J]. Bioresour Technol,2012,125:43-51.
    [125] MENCHAVEZ R N,HA S H. Ultrasound-enhanced recovery of butanol/ABE by pervaporation[J]. Appl Biochem Biotechnol,2013,171(5):1159-1169.
    [126] XUE C,DU G Q,CHEN L J,et al. Evaluation of asymmetric polydimethylsiloxane-polyvinylidene fluoride composite membrane and incorporated with acetone-butanol-ethanol fermentation for butanol recovery[J].J Biotechnol,2014,188:158-165.
    [127] HECKE W V,VANDEZANDE P,CLAES S,et al. Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes[J].Bioresour Technol,2012,111(1):368-377.
    [128] XUE C,YANG D,DU G,et al.Evaluation of hydrophobic microzeolite-mixed matrix membrane and integrated with acetonebutanol-ethanol fermentation for enhanced butanol production[J].Biotechnol Biofuels,2015,8(1):105.
    [129] YANG D,TIAN D X,XUE C,et al. Tuned fabrication of the aligned and opened CNT membrane with exceptionally high permeability and selectivity for bioalcohol recovery[J]. Nano Lett,2018,18,6150-6156.
    [130] XUE C,WANG Z,WANG S,et al.The vital role of citrate buffer in acetone-butanol-ethanol(ABE)fermentation using corn stover and high-efficient product recovery by vapor stripping-vapor permeation(VSVP)process[J]. Biotechnol Biofuels,2016,9(1):146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700