乌梁素海富营养化湖泊湖滨湿地过渡带细菌群落结构的高通量分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-throughput analysis of bacterial community of transition zone in littoral wetland of Wuliangsuhai eutrophic lake
  • 作者:李靖宇 ; 杜瑞芳 ; 赵吉
  • 英文作者:Jingyu Li;Ruifang Du;Ji Zhao;College of Environment & Resources,Inner Mongolia University;College of Life Sciences,Inner Mongolia University;College of Biological Science&Engineering,Beifang Univesity of Nationality;key Laboratory of Fermentation,Brewing Engineering&Biotechnology,State Nationalities Affairs Commission,Beifang Univesity of Nationality;Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse,Inner Mongolia University;
  • 关键词:富营养化湖泊 ; 湖滨湿地 ; 沉积物 ; 细菌群落结构 ; 空间异质性
  • 英文关键词:Eutrophic Lake,Lakeside wetlands,Sediments,Bacterial community structure,Spatial heterogeneity
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:内蒙古大学环境与资源学院;内蒙古大学生命科学学院;北方民族大学生物科学与工程学院;北方民族大学国家民委发酵酿造工程生物技术重点实验室;内蒙古大学内蒙古自治区环境污染控制与废物资源化重点实验室;
  • 出版日期:2014-12-29 16:08
  • 出版单位:微生物学报
  • 年:2015
  • 期:v.55;No.301
  • 基金:国家自然科学基金(31160129,31460212);; 北方民族大学引进人才科研启动项目(44/4400302502)~~
  • 语种:中文;
  • 页:WSXB201505013
  • 页数:9
  • CN:05
  • ISSN:11-1995/Q
  • 分类号:83-91
摘要
【目的】揭示乌梁素海富营养化湖泊湖滨湿地沉积物与土壤过渡带细菌群落的组成、丰度以及多样性变化,结合土壤理化因子探讨其对细菌群落结构的影响。【方法】采用湿地土壤总DNA提取方法提取沉积物和土壤总DNA,对细菌群落的16S rRNA基因的V1-V3区进行高通量测序,分析各样品中细菌群落结构的组成、丰度以及多样性指标;土壤理化性质采用标准方法测定,分析其对细菌群落结构的驱动作用。【结果】富营养化湖泊湖滨湿地水陆过渡带的芦苇沼泽沉积物、碱蓬群落盐碱化土壤和白刺群落荒漠化土壤中,细菌群落组成和各类群细菌的相对丰度差异较大,门水平上的细菌类群主要有Proteobacteria、Bacteroidetes、Chloroflexi、Actinobacteria、Planctomycetes和Gemmatimonadetes,细菌群落多样性指数随陆向分布依次在增高,门水平上Proteobacteria和属水平上Sulfurimonas对湖泊退化演化敏感;环境因子最佳子集为总磷、水溶盐总量和铵态氮的组合对整个细菌群落结构的影响最为明显,相关系数最高(R=0.8857),Mantel检验结果表明这种相关关系为显著相关(P=0.037)。【结论】乌梁素海富营养化湖泊湖滨湿地过渡带细菌群落结构差异较大,Sulfurimonas属在乌梁素海富营养化湖泊沉积物的生物地球化学循环中扮演着重要的角色,应在以后的研究中得到更多的关注。
        [Objective] We studied soil bacterial community composition,abundance and diversity of transition zone along eutrophic lakeside wetland sediments and soils. [Methods] The total DNA was extracted according to the sediment DNA extraction. Then high-throughput pyrosequencing was used to detect soil bacterial community composition,abundance and diversity based-on 16 S rRNA gene. Soil physicochemical properties were tested to analyze its effects on bacterial community according to standard methods. [Results] The soil bacterial community composition and relative abundance were very different across transition zone in littoral wetland. Bacteria groups mainly include Proteobacteria,Bacteroidetes,Chloroflexi,Actinobacteria,Planctomycetes and Gemmatimonadetes at phylum level. The diversity index of bacterial communities gradually increased according the land distribution,especially the phylum Proteobacteria and the genus Sulfurimonas. Correlation analysis indicated that the combination of total phosphorus, total water soluble salt and ammonium has the most significant effects on the whole bacterial community structure,and Mantel Test results indicated that the correlation was statistically significant( R = 0. 8857,P = 0. 037). [Conclusion] The bacterial community structure of transition zone is quite different in littoral wetland of Wuliangsuhai eutrophic lake,where Sulfurimonas play potential important roles in biogeochemical cycles of sediments in Wuliangsuhai Lake.
引文
[1]Hartmana WH,Richardson CJ,Vilgalys R,Bruland GL.Environmental and anthropogenic controls over bacterial communities in wetland soils.Proceedings of the National Academy of Sciences of the United States of America,2008,105(46):17842-17847.
    [2]Filip Z.International approach to assessing soil quality by ecologically-related biological parameters.Agriculture,Ecosystems&Environment,2002,88(2):169-174.
    [3]Weinert N,Piceno Y,Ding GC,Meincke R,Heuer H,Berg G,Schloter M,Andersen G,Smalla K.Phylochip hybridization uncovered an enormous bacterial diversity in the rhizozphere of different potato cultivars:many common and few cultivar-dependent taxa.FEMS Microbiology Ecology,2011,75(3):497-506.
    [4]Hansel CM,Fendorf S,Jardine PM,Francis CA.Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile.Applied and Environmental Microbiology,2008,74(5):1620-1633.
    [5]Kuramae EE,Yergeau E,Wong LC,Pijl AS,van Veen JA,Kowalchuk GA.Soil characteristics more strongly influence soil bacterial communities than land-use type.FEMS Microbiology Ecology,2012,79(1):12-24.
    [6]Schutter ME,Sandeno JM,Dick RP.Seasonal,soil type,and alternative management influences on microbial communities of vegetable cropping systems.Biology and Fertility of Soils,2001,34(6):397-410.
    [7]da C Jesus E,Marsh TL,Tiedje JM,de S Moreira FM.Changes in land use alter the structure of bacterial communities in Western Amazon soils.The ISME Journal,2009,3:1004-1011.
    [8]Wang BZ,Zhang CX,Liu JL,Zeng XW,Li FR,Wu YC,Lin XG,Xiong ZQ,Xu J,Jia ZJ.Microbial community changes along a land-use gradient of desert soil origin.Pedosphere,2012,22(5):593-603.
    [9]Yergeau E,Bokhorst S,Huiskes AHL,Boschker HTS,Aerts R,Kowalchuk GA.Size and structure of bacterial,fungal and nematode communities along an Antarctic environmental gradient.FEMS Microbiolgy Ecology,2007,59(2):436-451.
    [10]Lauber CL,Strickland MS,Bradford MA&Fierer N.The influence of soil properties on the structure of bacterial and fungal communities across land-use types.Soil Biology and Biochemistry,2008,40(9):2407-2415.
    [11]Meadow JF,Zabinski CA.Prokaryotic communities differ along a geothermal soil photic gradient.Microbial Ecology,2013,65(1):171-179.
    [12]Allison SD,Martiny JBH.Resistance,resilience,and redundancy in microbial communities.Proceedings of the National Academy of Sciences of the United States of America,2008,105(Supplement 1):11512-11519.
    [13]Hamonts K,Clough TJ,Stewart A,Clinton PW,Richardson AE,Wakelin SA,O’Callaghan M,Condron LM.Effect of nitrogen and waterlogging on denitrifier gene abundance,community structure and activity in the rhizosphere of wheat.FEMS Microbiology Ecology,2013,83(3):568-584.
    [14]Meyer-Reil L,Kster M.Eutrophication of marine waters:Effects on benthic microbial communities.Marine Pollution Bulletin,2000,41(1-6):255-263.
    [15]RappéMS,Giovannoni SG.The uncultured microbial majority.Annual Review of Microbiology,2003,57:369-394.
    [16]Hollister EB,Engledow AS,Hammett AJM,Provin TL,Wilkinson HH,Gentry TJ.Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments.The ISME Journal,2010,4:829-838.
    [17]Sun HM,He J,Lv CW,Gao XD,Fan QY,Xue HX.Nitrogen pollution and spatial distribution pattern of Wuliangsuhai Lake.Geographical Research,2006,25(6):1003-1012.(in Chinese)孙惠民,何江,吕昌伟,高兴东,樊庆云,薛红喜.乌梁素海氮污染及其空间分布格局.地理研究,2006,25(6):1003-1012.
    [18]Sun HM,He J,Gao XD,Lv CW,Fan QY,Xue HX.Distribution of total phosphorus in sediments of Wuliangsuhai Lake.Acta Sedimentologica Sinica,2006,24(4):579-584.(in Chinese)孙惠民,何江,高兴东,吕昌伟,樊庆云,薛红喜.乌梁素海沉积物中全磷的分布特征.沉积学报,2006,24(4):579-584.
    [19]Li J,Li B,Zhou Y,Xu J,Zhao J.A rapid DNA extraction method for PCR amplification from wetland soils.Letters in Applied Microbiology,2011,52(6):626-633.
    [20]Grote J,Schott T,Bruckner CG,Glckner FO,Jost G,Teeling H,Labrenz M,Jürgens K.Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones.Proceedings of the National Academy of Sciences of the United States of America,2012,109(2):506-510.
    [21]Huber JA,Mark Welch DB,Morrison HG,Huse SM,Neal PR,Butterfield DA,Sogin ML.Microbial population structures in the deep marine biosphere.Science,2007,318(5847):97-100.
    [22]Takai K,Suzuki M,Nakagawa S,Miyazaki M,Suzuki Y,Inagaki F,Horikoshi K.Sulfurimonas paralvinellae sp.nov.,a novel mesophilic,hydrogen-and sulfuroxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest,reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb.nov.and emended description of the genus Sulfurimonas.International Journal of Systematic and Evolutionary Microbiology,2006,56(8):1725-1733.
    [23]Ma WC,Yu HB,Xi BD,Yao LH,Guo XJ.Parameters and characteristics of saline soils around Ulansuhai Nur.Chinese Journal of Environmental Engineering,2011,5:696-702.(in Chinese)马文超,于会彬,席北斗,姚磊华,郭旭晶.乌梁素海湖滨带盐碱土碱化参数与特征分析.环境工程学报,2011,5(3):696-702.
    [24]Conley DJ,Paerl HW,Howarth RW,Boesch DF,Seitzinger SP,Havens KE,Lancelot C,Likens GE.Controlling Eutrophication:Nitrogen and Phosphorus.Ecology,2009,323:1014-1015.
    [25]Kuramae EE,Gamper H,van Veen JA,Kowalchuk GA.Soil and plant factors driving the community of soilborne microorganisms across chronosequences of secondary succession of chalk grasslands with a neutral p H.FEMS Microbiology Ecology,2011,77(2):285-294.
    [26]Galloway JN,Dentener FJ,Capone DG,Boyer EW,Howarth RW,Seitzinger SP,Asner GP,Cleveland CC,Green PA,Holland EA,Karl DM,Michaels AF,Porter JH,Townsend AR,Vosmarty CJ.Nitrogen cycles:past,present and future.Biogeochemistry,2004,70(2):153-226.
    [27]Ramirez KS,Lauber CL,Knight R,Bradford MA.,Fierer N.Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems.Ecology,2010,91(12):3463-3470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700