昆虫嗅觉相关可溶性蛋白的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of soluble proteins on chemosensationin insects
  • 作者:张玉 ; 杨斌 ; 王桂荣
  • 英文作者:ZHANG Yu;YANG Bin;WANG Gui-Rong;State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences;Research Center for Grassland Entomology, Inner Mongolia Agricultural University;
  • 关键词:气味结合蛋白 ; 化学感受蛋白 ; 化学通讯 ; 基因表达 ; 蛋白结构
  • 英文关键词:Odorant-binding protein;;chemosensory protein;;chemical communication;;gene expression;;protein structure
  • 中文刊名:KCTD
  • 英文刊名:Journal of Environmental Entomology
  • 机构:中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室;内蒙古农业大学草原昆虫研究中心;
  • 出版日期:2019-03-25
  • 出版单位:环境昆虫学报
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(31701859)
  • 语种:中文;
  • 页:KCTD201902001
  • 页数:12
  • CN:02
  • ISSN:44-1640/Q
  • 分类号:4-15
摘要
昆虫在长期进化过程中形成了一套高度敏感的嗅觉系统,通过该系统昆虫可以完成寻觅配偶、定位寄主及选择产卵位点等多种行为。在昆虫嗅觉系统中的可溶性蛋白主要有气味结合蛋白(odorant-binding protein, OBP)和化学感受蛋白(chemosensory protein, CSP)。OBP可以特异性结合并运输疏水性的气味分子相应的受体,是昆虫化学识别过程的第一步,具有十分重要的作用。CSP与OBP的结构和功能类似,主要参与化合物的识别和运输,尽管没有直接的证据表明CSP也参与了昆虫的化学感受过程,但已有研究发现,CSP在昆虫嗅觉系统中发挥着重要的作用。本文主要从分子特性、蛋白结构、表达模式、生理功能等方面分别对昆虫的OBP和CSP进行了概述,为深入的研究两者的功能提供理论参考,进而为以昆虫嗅觉系统为靶标的害虫防治提供新的思路。
        Insects developed a high sensitive olfactory system for many behaviors such as mating, feeding, and oviposition. The main soluble proteins in insect olfactory system are odorant binding protein(OBP)and chemosensory protein(CSP). OBP plays important roles because OBP functionally work as the first step to bind and transport hydrophobic odorant molecules to their corresponding receptors. CSP shares a common ancestor and may have similar roles with OBP such as binding and shipping chemical compounds. But there is still no direct evidence that CSP is also involved in the insect's chemosensory process. In this study, we reviewed the molecular characteristics, protein structures, expression patterns and functions of OBP and CSP. It should be helpful for the further studies, in these two families and may provide new cogitations in pest control based on insect olfactory system.
引文
Angeli S, Ceron F, Scaloni A, et al. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria [J]. Eur. J. Biochem., 1999, 262 (3): 745-754.
    Anholt R, Mackay T. The genetic architecture of odor-guided behavior in Drosophila melanogaster [J]. Behav. Genet., 2001, 31 (1): 17-27.
    Arakane Y, Specht CA, Kramer KJ, et al. Chitin synthases are required for survival, fecundity and egg hatch in the redflour beetle, Tribolium castaneum [J]. Insect Biochem. Mol. Biol., 2008, 38 (10): 959-962.
    Ban L, Scaloni A, D'Ambrosio C, et al. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria [J]. Cell. Mol. Life Sci., 2003, 60 (2): 390-400.
    Biessmann H, Andronopoulou E, Biessmann MR, et al. The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes [J]. PLoS ONE, 2010, 5 (3): e9471.
    Bonasio R, Zhang G, Ye C, et al. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator [J]. Science, 2010, 329 (5995): 1068-1071.
    Breer H, Krieger J, Raming K. A novel class of binding proteins in the antennae of the silk moth Antheraea pernyi [J]. Insect Biochem., 1990, 20 (7): 735-740.
    Briand L, Nespoulous C, Huet JC, et al. Disulfide pairing and secondary structure of ASP1, an olfactory-binding protein from honeybee (Apis mellifera L.) [J]. J. Pept. Res., 2001, 58 (6): 540-545.
    Bruce T, Wadhams L, Woodcock C. Insect host location: A volatile situation [J]. Trends Plant Sci., 2005, 10 (6): 269-274.
    Calvello M, Guerra N, Brandazza A, et al. Soluble proteins of chemical communication in the social wasp Polistes dominulus [J]. Cell. Mol. Sci., 2003, 60 (9): 1933-1943.
    Campanacci V, Krieger J, Bette S, et al. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay [J]. J. of Biol. Chem., 2001, 276 (23): 20078-20084.
    Campanacci V, Lartigue A, H?llberg B, et al. Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding [J]. Proc. Natl. Acad. Sci. USA, 2003, 100 (9): 5069-5074.
    Chang HT, Ai D, Zhang J, et al. Candidate odorate odorant binding proteins and chemosensory proteins in larval chemoser tissues of two closely related noctuidae moths Helicoverpa amigera and H. Assulta [J]. PLoS ONE, 2017, 12 (6): e0179243.
    Chen DK, Xing ZL, Lei ZR. Identification and function of the OBP13 protein from the leafminer (Liriomyza sativae) [J]. Scientia Agricultura Sinica, 2018, 51 (5): 893-904. [陈东凯, 邢振龙, 雷仲仁. 美洲斑潜蝇气味结合蛋白OBP13的鉴定与功能 [J]. 中国农业科学, 2018, 51 (5): 893-904]
    Dani FR, Iovinella I, Felicioli A, et al. Mapping the expression of soluble olfactory proteins in the honeybee [J]. J. Proteome Res., 2010, 9 (4): 1822-1833.
    De Bruyne M, Baker TC. Odor detection in insects: Volatile codes [J]. J. Chem. Ecol., 2008, 34 (7): 882-897.
    De Biasio F, Riviello L, Bruno D, et al. Expression pattern analysis of odorant-binding proteins in the pea aphid Acyrthosiphon pisum [J]. Insect Sci., 2015, 22 (2): 220-234.
    Dippel S, Oberhofer G, Kahnt J, et al. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions [J]. BMC Genomics, 2014, 15: 1141.
    Du G, Ng CS, Prestwich GD. Odorant binding by a pheromone binding protein: Active site mapping by photoaffinity labeling [J]. Biochemistry, 1994, 33 (16): 4812-4819.
    Feng L, Prestwich GD. Expression and characterization of a lepidopteran general odorant binding protein [J]. Insect Biochem. Mol. Biol., 1997, 27 (5): 405-412.
    Findlay GD, Yi X, Maccoss MJ, et al. Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating [J]. PLoS Biol., 2008, 6 (7): e178.
    Forêt S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera) [J]. Genome Res., 2006, 16 (11): 1404-1413.
    Forêt S, Wanner KW, Maleszka R. Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analysis and expressional profiling [J]. Insect Biochem. Mol. Biol., 2007, 37(1): 19-28.
    Ghanim M, Dombrovsky A, Raccah B, et al. A microarray approach identifies ANT, OS-D and takeout-like genes as differentially regulated in alate and apterous morphs of the green peach aphid Myzus persicae (Sulzer) [J]. Insect Biochem. Mol. Biol., 2006, 36 (11): 857-868.
    Gong DP, Zhang HJ, Ping Z, et al. The odorant binding protein gene family from the genome of silkworm, Bombyx mori [J]. BMC Genomics, 2009a, 10: 332.
    Gong DP, Zhang HJ, Zhao P, et al. Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori [J]. Insect Biochem. Mol. Biol., 2007, 37 (3): 266-277.
    Gong L, Chen Y, Cheng G, et al. Insect chemosensory proteins [J]. Chinese Bulletin of Entomology, 2009, 46 (4): 646-652. [龚亮, 陈永, 程功, 等. 昆虫化学感受蛋白 [J]. 应用昆虫学报, 2009, 46 (4): 646-652]
    Gong ZJ, Zhou WW, Yu HZ, et al. Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) [J]. Insect Mol. Biol., 2009b, 18 (3): 405-417.
    Gu SH, Wang WX, Wang GR, et al. Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, Adelphocoris lineolatus (GOEZE) [J]. Arch. Insect Biochem. Physiol., 2011, 77 (2): 81-99.
    Gu SH, Wu KM, Guo YY, et al. Identification and expression profiling of odorant binding proteins and chemosensory proteins between two wingless morphs and a winged morph of the cotton aphid Aphis gossypii glover [J]. PLoS ONE, 2013, 8 (9): e73524.
    Guo H, Huang LQ, Pelosi P, et al. Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components [J]. Insect Biochem. Mol. Biol., 2012, 42 (9): 708-716.
    Guo W, Wang X, Ma Z, et al. CSP and take out genes modulate the switch between ttraction and repulsion during behavioral phase change in the Migratory Locust [J]. PLoS Genetics, 2011, 7 (2): e1001291.
    Harada E, Nakagawa J, Asano T, et al. Functional evolution of duplicated odorant-binding protein genes, Obp57d and Obp57e, in Drosophila [J]. PLoS ONE, 2012, 7 (1): e29710.
    He P, Zhang J, Liu NY, et al. Distinct expression profiles and different functions of odorant binding proteins in Nilaparvata lugens (St?l) [J]. PLoS ONE, 2011, 6 (12): e28921.
    Heavner ME, Gueguen G, Rajwani R, et al. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera [J]. Gene, 2013, 526 (2): 195-204.
    Hekmat-Scafe DS, Scafe CR, Mckinney AJ, et al. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster [J]. Genome Res., 2002, 12 (9): 1357-1369.
    Horst R, Damberger F, Luginbühl P, et al. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release [J]. Proc. Natl. Acad. Sci. USA, 2001, 98 (25): 14374-14379.
    Iovinella I, Dani FR, Niccolini A, et al. Differential expression of odorant-binding proteins in the mandibular glands of the honeybee according to caste and age [J]. J. Proteome Res., 2011, 10 (8): 3439-3449.
    Ishida Y, Chiang V, Leal WS. Protein that makes sense in the Argentine ant [J]. Naturwissenschaften, 2002, 89 (11): 505-507.
    Jacquin-Joly E, Bohbot J, Francois MC, et al. Characterization of the general odorant-binding protein 2 in the molecular coding of odorants in Mamestra brassicae [J]. Eur. J. Biochem., 2010, 267 (22): 6708-6714.
    Jiang X, Krieger J, Breer H, et al. Distinct subfamilies of odorant binding proteins in Locust (Orthoptera, Acrididae): Molecular evolution, structural variation, and sensilla-specific expression [J]. Front. Physiol., 2017, 8: 734.
    Jiao Y, Feng H, Sun H, et al. Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae) [J]. PLoS ONE, 2012, 7 (3): e33589.
    Julien P, Aline G, Zainulabeuddin S, et al. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants [J]. J. Chem. Ecol., 2010, 36 (3): 245-248.
    Kaissling KE.Olfactory perireceptor and receptor events in moths: A kinetic model [J]. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behac. Physiol., 2009, 195 (10): 895-922.
    Khuhro SA, Yan Q, Liao H, et al. Expression profile and functional characterization suggesting the involvement of three chemosensory proteins in perception of hose plant colatiles in Chio suppressalis(Lepidoptera: Pyralidae) [J]. J. Insect Sci., 2018, 18 (5): 6; 1-8.
    Kitabayashi AN, Arai T, Kubo T, et al. Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach) [J]. Insect Biochem. Mol. Biol., 1998, 28 (10): 785-790.
    Krieger J, von Nickisch-Rosenegk E, Mameli M, et al. Binding proteins from the antennae of Bombyx mori [J]. Insect Biochem. Mol. Biol., 1996, 26 (3): 297-307.
    Kulmuni J, Wurm Y, Pamilo P. Comparative genomics of chemosensory protein genes reveals rapidevolution and positiveselection in ant-specific duplicates [J]. Heredity (Edinb), 2013, 110 (6): 538-547.
    Lartigue A, Campanacci V, Roussel A, et al. X-ray structure and ligand binding study of a moth chemosensory protein [J]. J. Biol. Chem., 2002, 277 (35): 32094-32098.
    Laughlin JD, Ha TS, Jones DNM, et al. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein [J]. Cell, 2008, 133 (7): 1255-1265.
    Leal WS, Chen AM, Erickson ML. Selective and pH-dependent binding of a moth pheromone to a pheromone-binding protein [J]. J. Chem. Ecol., 2005, 31 (10): 2493.
    Leal WS, Barbosa RM, Xu W, et al. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes [J]. PLoS ONE, 2008, 3 (8): e3045.
    Leal WS. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes [J]. Annu. Rev. Entomol., 2013, 58: 373-391.
    Li G, Chen X, Li B, et al. Binding properties of general odorant binding proteins from the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) [J]. PLoS ONE, 2016, 11 (5): e0155096.
    Li HL, Ni CX, Tan J, et al. Chemosensory proteins of the eastern honeybee, Apis cerana : Identification, tissue distribution and olfactory related functional characterization [J]. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2016: 194-195.
    Li L, Zhou YT, Tan Y, et al. Identification of odorant-binding protein genes in Galeruca daurica (Coleoptera: Chrysomelidae) and analysis of their expression profiles [J]. Bull. Entomol. Res., 2017, 107 (4): 550-561.
    Li Z, Shen Z, Zhou J, et al. Bioinformatics-based identification of chemosensory proteins in African malaria mosquito, Anopheles gambiae [J]. Genomics Proteomics Bioinformatics, 2003, 1 (4): 288-298.
    Li ZQ, Zhang S, Ma Y, et al. First transcriptome and digital gene expression analysis in Neuroptera with an emphasis on chemoreception genes in Chrysopa pallens (Rambur) [J]. PLoS ONE, 2013, 8 (6): e67151.
    Liu SJ, Liu NY, He P, et al. Molecular characterization, expression patterns, and ligand-binding properties of two odorant-binding protein genes from Orthaga achatina (Butler) (Lepidoptera: Pyralidae) [J]. Arch. Insect Biochem. Physiol., 2012, 80 (3): 123-139.
    Liu Z, Smagghe G, Lei Z, et al. Identification of male-and female-specific olfaction genes in antennae of the oriental fruit fly (Bactrocera dorsalis) [J]. PLoS ONE, 2016, 11 (2): e0147783.
    Liu H, Zhao XF, Fu L, et al. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel) [J]. Sci. Rep., 2017, 7 (1): 15894.
    Maleszka R, Stange G. Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum [J]. Gene, 1997, 202 (1-2): 39-43.
    Manoharan M, Ng Fuk Chong M, Va?tinadapoulé A, et al. Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus [J]. Genome Biol. Evol., 2013, 5 (1): 163-180.
    Mckenna MP, Hekmat-Scafe DS, Gaines P, et al. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system [J]. J. Biol. Chem., 1994, 269 (23): 16340-16347.
    McKenzie SK, Oxley PR, Kronauer DJ. Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins [J]. BMC Genomics, 2014, 15: 718.
    Misof B, Liu SL, Meusemann K, et al. Phylogenomics resolves the timingand pattern of insect evolution [J]. Science, 2014, 346 (6210): 763-767.
    Missbach C, Vogel H, Hansson BS, et al. Identification of odorant binding proteins and chemosensory proteins in antennal transcriptomes of the jumping bristletail Lepismachilis y-signata and the firebrat Thermobia domestica : Evidence for an independent OBP-OR origin [J]. Chem. Senses, 2015, 40 (9): 615-626.
    Mosbah A, Campanacci V, Lartigue A, et al. Solution structure of a chemosensory protein from the moth Mamestra brassicae [J]. Biochem. J., 2003, 369 (1): 39-44.
    Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, et al. Chemosensory proteins from the proboscis of Mamestra brassicae [J]. Chem. Senses, 2000, 25 (5): 541-553.
    Niu DJ, Liu Y, Dong XT, et al. Transcriptome based identification and tissue expression profiles of chemosensory genes in Blattella germanica (Blattaria: Blattidae) [J]. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2016, 18: 30-43.
    Oliveira DS, Brito NF, Franco TA, et al. Functional characterization of odorant binding protein 27 (RproOBP27) from Rhodnius prolixus antennae [J]. Front. Physiol., 2018, 9: 1175.
    Ozaki M, Wada Katsumata A, Fujikawa K, et al. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum [J]. Science, 2005, 309 (5732): 311-314.
    Paolini S, Scaloni A, Amoresano A, et al. Amino acid sequence, post-translational modifications, binding and labelling of porcine odorant-binding protein [J]. Chem. Senses, 1998, 23 (6): 689-698.
    Pelosi P, Iovinella I, Zhu J, et al. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects [J]. Biol. Rev. Camb. Philos. Soc., 2018, 93 (1): 184-200.
    Pelosi P, Mastrogiacomo R, Iovinella I, et al. Structure and biotechnological applications of odorant-binding proteins [J]. Appl. Microbiol. Biotechnol., 2014, 98 (1): 61-70.
    Pikielny CW, Hasan G, Rouyer F, et al. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs [J]. Neuron, 1994, 12 (1): 35-49.
    Prestwich GD. Proteins that smell: Pheromone recognition and signal transduction [J]. Bioorg. Med. Chem., 1996, 4 (3): 505-513.
    Prokupek AM, Eyun SI, Ko L, et al. Molecular evolutionary analysis of seminal receptacle sperm storage organ genes of Drosophila melanogaster [J]. J. Evol. Biol., 2010, 23 (7): 1386-1398.
    Qiao H, He X, Schymura D, et al. Cooperative interactions between odorant-binding proteins of Anopheles gambiae [J]. Cell. Mol. Life Sci., 2011, 68 (10): 1799-1813.
    Rützler M, Zwiebel LJ. Molecular biology of insect olfaction: Recent progress and conceptual models [J]. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 2005, 191 (9): 777-790.
    Sabatier L, Jouanguy E, Dostert C, et al. Pherokine-2 and-3: Two Drosophila molecules related to pheromone / odor-binding proteins induced by viral and bacterial infections [J]. Febs J., 2010, 270 (16): 3398-3407.
    Sadd BM, Barribeau SM, Bloch G, et al. The genomes of two key bumblebee species with primitive eusocial organization [J]. Genome Biol., 2015, 16: 76.
    Sandler BH, Nikonova L, Leal WS, et al. Sexual attraction in the silkworm moth: Structure of the pheromone-binding-protein-bombykol complex [J]. Chem. Biol., 2000, 7 (2): 143-151.
    Sato K, Touhara K. Insect olfaction: Receptors, signal transduction, and behavior [J]. Results Probl. Cell Differ., 2008, 47: 121-138.
    Shanbhag SR, Park SK, Pikielny CW, et al. Gustatory organs of Drosophila melanogaster: Fine structure and expression of the putative odorant-binding protein PBPRP2 [J]. Cell Tissue Res., 2001, 304 (3): 423-437.
    Shyamala BV, Chopra A. Drosophila melanogaster chemosensory and muscle development: Identification and properties of a novel allele of scalloped and of a new locus, SG18.1, in a Gal4 enhancer trap screen [J]. J. Genetics, 1999, 78 (2): 87-97.
    Siciliano P, He X, Woodcock C, et al. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata [J]. Insect Biochem. Mol. Biol., 2014, 48: 51-62.
    Smith CD, Robinson GE. Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile) [J]. Proc. Natl. Acad. Sci. USA, 2011, 108 (14): 5673-5678.
    Smith CR, Smith CD, Robertson HM, et al. Draft genome of the red harvester ant Pogonomyrmex barbatus [J]. Proc. Natl. Acad. Sci. USA, 2011, 108 (14): 5667-5672.
    Song HQ, Sun HZ, Du J. Identification and tissue distribution of chemosensory protein and odorant binding protein genes in Tropidothorax elegans distant (Hemiptera: Lygaeidae) [J]. Sci. Rep., 2018, 8: 7803.
    Stathopoulos A, Drenth MV, Erives A, et al. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo [J]. Cell, 2002, 111 (5): 687-701.
    Sun L, Li Y, Zhang Z, et al. Expression patterns and ligand binding characterization of Plus-C odorant-binding protein 14 from Adelphocoris lineolatus (Goeze) [J]. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2018a, 227: 75-82.
    Sun JS, Larter NK, Chahda JS, et al. Humidity response depends on the small soluble protein OBP59a in Drosophila [J]. Elife, 2018b, 7: e39249.
    Sun L, Wang Q, Wang Q, et al. Identification and characterization of odorant binding proteins in the forelegs of Adelphocoris lineolatus (Goeze) [J]. Front. Physiol., 2017, 8: 735.
    Sun L, Zhou JJ, Gu SH, et al. Chemosensillum immunolocalization and ligand specificity of chemosensory proteins in the alfalfa plant bug Adelphocoris lineolatus (Goeze) [J]. Scientific Reports, 2015, 5: 8073.
    Sun M, Liu Y, Wang G. Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella [J]. J. Insect Physiol., 2013, 59 (1): 46-55.
    Sun Y, Huang LQ, Pelosi P, et al. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa Species [J]. PLoS ONE, 2012, 7 (1): e30040.
    Tegoni M, Campanacci V, Cambillau C. Structural aspects of sexual attraction and chemical communication in insects [J]. Trends Biochem. Sci., 2004, 29 (5): 257-264.
    Terrapon N, Li C, Robertson HM, et al. Molecular traces of alternative social organization in a termite genome [J]. Nat. Commun., 2014, 5 (6183): 3636.
    Tian Z, Liu J, Zhang Y. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals [J]. Sci. Rep., 2016, 6: 22336.
    Venthur H, Mutis A, Zhou J, et al. Ligand binding and homology modelling of insect odorant-binding proteins [J]. Physiol. Entomol., 2015, 39 (3): 183-198.
    Vera JC, Wheat CW, Fescemyer HW, et al. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing [J]. Mol. Ecol., 2008, 17 (7): 1636-1647.
    Vieira FG, Rozas J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: Origin and evolutionary history of the chemosensory system [J]. Genome Biol. Evol., 2011, 3 (1): 476-490.
    Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae [J]. Nature, 1981, 293 (5828): 161-163.
    Vogt RG, Rybczynski R, Lerner MR. Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: Comparisons with other insect OBPs and their signal peptides [J]. J.Neurosci., 1991, 11 (10): 2972-2984.
    Vogt RG. 3.15-molecular basis of pheromone detection in insects [J]. Comprehensive Mol. Insect Sci., 2005: 753-803.
    Waris MI, Younas A, UI Qamar MT, et al. Silencing of chemosensory protein gene NlugCSP8 by RNAi induces declining behavioral responses of Niaparcata lugens [J]. Front. Physiol., 2018, 9: 379.
    Wang R, Li F, Zhang W, et al. Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome [J]. PLoS ONE, 2017, 12 (2): e0171739.
    Wanner KW, Willis LG, Theilmann DA, et al. Analysis of the insect OS-D-like gene family [J]. J. Chem. Ecol., 2004, 30 (5): 889-911.
    Wogulis M, Morgan T, Ishida Y, et al. The crystal structure of an odorant binding protein from Anopheles gambiae: Evidence for a common ligand release mechanism [J]. Biochem. Biophys. Res. Commun., 2006, 339 (1): 157-164.
    Wu C, Crowhurst RN, Dennis AB, et al. De novo transcriptome analysis of the common new zealand stick insect Clitarchus hookeri (Phasmatodea) reveals genes involved in olfaction, digestion and sexual reproduction [J]. PLoS ONE, 2016, 11 (6): e0157783.
    Wurm Y, Wang J, Keller L. Changes in reproductive roles are associated with changes in gene expression in fire ant queens [J]. Mol. Ecol., 2010, 19 (6): 1200-1211.
    Xu P, Atkinson R, Jones DN, et al. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons [J]. Neuron, 2005, 45 (2): 193-200.
    Xu X, Xu W, Rayo J, et al. NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBPl): Implications for pH-sensitive pheromone detection [J]. Biochem., 2012, 49 (7): 1469-1476.
    Yan W, Luo YQ, Li ZX, et al. Modeling the odorant binding protein of the red palm weevil, Rhynchophorus ferrugineus [J]. Chinese Journal of Applied Entomology, 2017, 54 (6): 909-914. [阎伟, 骆有庆, 李朝绪, 等. 锈色棕榈象气味结合蛋白的同源建模 [J]. 应用昆虫学报, 2017, 54 (6): 909-914]
    Yang B, Ozaki K, Ishikawa Y, et al. Sexually biased expression of odorant-binding proteins and chemosensory proteins in Asian corn borer Ostrinia furnacalis (Lepidoptera: Crambidae) [J]. Appl. Entomol. Zool., 2016, 51 (3): 373-383.
    Yao Q, Xu S, Dong Y, et al. Identification and characterisation of two general odourant-binding proteins from the litchi fruit borer, Conopomorpha sinensis Bradley [J]. Pest Manag. Sci., 2016, 72 (5): 877-887.
    Yin J, Zhuang X, Wang Q, et al. Three amino acid residues of an odorant-binding protein are involved in binding odours in Loxostege sticticalis L [J]. Insect Mol. Biol., 2015, 24 (5): 528-538.
    Younas A, Waris MI, Tahir UI, et al. Functional analysis of the chemosensory protein MsepCSP8 from the oriental armyworm Mythimna separata [J]. Front. Physiol., 2018, 9: 872.
    Yu GQ, Li DZ, Lu YL, et al. Deciphering the odorant binding, activation, and discrimination mechanism of Dhelobp21 from Dastarus helophoroides [J]. Sci. Rep., 2018, 8 (1): 13506.
    Zhang S, Maida R, Steinbrecht RA. Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera) [J]. Chem. Senses, 2001, 26 (7): 885-896.
    Zhang T, Liu NY, Dong SL. cDNA cloning, tissue distribution and ligand binding characteristics of antennal binding protein 2 from the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) [J]. Acta Entomologica Sinica, 2012, 55 (5): 499-509. [张婷, 刘乃勇, 董双林. 甜菜夜蛾触角结合蛋白Ⅱ的cDNA克隆、组织分布及配体结合特性分析 [J]. 昆虫学报, 2012, 55 (5): 499-509]
    Zhang S, Pang BP, Zhang L. Novel odorant-binding proteins and their expression parttens in grasshopper, Oedaleus asiaticus [J]. Biochem. Biophy. Res. Comun., 2015, 460 (2): 274-280.
    Zhang J, Luo D, Wu P, et al. Identification and expression profiles of novel odorant binding proteins and functional analysis of OB99a in Bactrocera dorsalis [J]. Arch. Insect Biochem. Physiol., 2018a, 98 (1): e21452.
    Zhang Y, Tan Y, Zhou XR, et al. A whole-body transcriptome analysis and expression profiling of odorant binding protein genes in Oedaleus infernalis [J]. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2018b, 28: 134-141.
    Zhao J. Chemosense-related Genes Identification and Expression Analysis in Phenacoccus solenopsis Tinsley [D]. Guangzhou: Huanan Agricultural University, 2016. [赵洁. 棉花粉蚧化学感受相关基因的鉴定及表达模式研究 [D]. 广州: 华南农业大学, 2016]
    Zhao L, Cui HC, Zhang LY, et al. Molecular binding characterization with tea plant volatiles of a general odorant-binding protein EoblGOBP2 in the tea geometrid, Ectropis oblique Prout (Lepidoptera: Geometridae) [J]. J. Tea Sci., 2014, 34 (2): 165-171. [赵磊, 崔宏春, 张林雅, 等. 茶尺蠖普通气味结合蛋白EoblGOBP2与茶树挥发物的结合功能研究 [J]. 茶叶科学, 2014, 34 (2): 165-171]
    Zhao HX, Zeng XN, Liang Q, et al. Study of the OBP5 gene in Apis mellifera ligustica and Apis cerana cerana [J]. Genet. Mol. Res., 2015, 14 (2): 6482-6494.
    Zhao Y, Ding J, Zhang Z, et al. Sex-and tissue-specific expression profiles of odorant binding protein and chemosensory protein genes in Bradysia odoriphaga (Diptera: Sciaridae) [J]. Front. Physiol., 2018, 9: 107.
    Zheng J, Li J, Han L, et al. Crystal structure of the Locusta migratoria odorant binding protein [J]. Biochem. Bioph. Res. Commun., 2015, 456 (3): 737-742.
    Zhou JJ, Vieira FG, He XL, et al. Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum [J]. Insect Mol. Biol., 2010, 19: 113-122.
    Zhou J, Zhang N, Wang P, et al. Identification of host-plant volatiles and characterization of two novel general odorant-binding proteins from the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) [J]. PLoS ONE, 2015, 10 (10): e0141208.
    Zhou SS, Sun Z, Ma W, et al. De novo analysis of the Nilaparvata lugens (St?l)antenna transcriptome and expression patterns of olfactory genes [J]. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2014, 9: 31-39.
    Zhu J, Ban L, Song LM, et al. General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food [J]. Insect Biochem. Mol. Biol., 2016a, 72: 10-19.
    Zhu J, Iovinella I, Dani FR, et al. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera [J]. Int. J. Biol. Sci., 2016b, 12 (11): 1394-1404.
    Zhuo ZH, Yang W, Xu DP, et al. Isolation and purification of an odorant binding protein from Batocera lineolata Chevrolat [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40 (4): 164-170. [卓志航, 杨伟, 徐丹萍, 等. 一种云斑天牛气味结合蛋白的分离纯化 [J]. 南京林业大学学报(自然科学版), 2016, 40 (4): 164-170]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700